These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26575407)

  • 1. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.
    Darré L; Machado MR; Brandner AF; González HC; Ferreira S; Pantano S
    J Chem Theory Comput; 2015 Feb; 11(2):723-39. PubMed ID: 26575407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2013 May; 34(13):1112-24. PubMed ID: 23382002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SIRAH 2.0 Force Field: Altius, Fortius, Citius.
    Machado MR; Barrera EE; Klein F; Sóñora M; Silva S; Pantano S
    J Chem Theory Comput; 2019 Apr; 15(4):2719-2733. PubMed ID: 30810317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels.
    Klein F; Soñora M; Helene Santos L; Nazareno Frigini E; Ballesteros-Casallas A; Rodrigo Machado M; Pantano S
    J Struct Biol; 2023 Sep; 215(3):107985. PubMed ID: 37331570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coarse-grained protein-protein potential derived from an all-atom force field.
    Basdevant N; Borgis D; Ha-Duong T
    J Phys Chem B; 2007 Aug; 111(31):9390-9. PubMed ID: 17616119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
    Li M; Liu F; Zhang JZ
    J Chem Theory Comput; 2016 Dec; 12(12):6147-6156. PubMed ID: 27782390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics.
    Dans PD; Zeida A; Machado MR; Pantano S
    J Chem Theory Comput; 2010 May; 6(5):1711-25. PubMed ID: 26615701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Protein-Protein Recognition in Solution Using the Coarse-Grained Force Field SCORPION.
    Basdevant N; Borgis D; Ha-Duong T
    J Chem Theory Comput; 2013 Jan; 9(1):803-13. PubMed ID: 26589072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling DMPC lipid membranes with SIRAH force-field.
    Barrera EE; Frigini EN; Porasso RD; Pantano S
    J Mol Model; 2017 Aug; 23(9):259. PubMed ID: 28799119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Martinizing" the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins.
    Ricci CG; Li B; Cheng LT; Dzubiella J; McCammon JA
    J Phys Chem B; 2017 Jul; 121(27):6538-6548. PubMed ID: 28613904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials.
    DeMille RC; Molinero V
    J Chem Phys; 2009 Jul; 131(3):034107. PubMed ID: 19624181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRAH tools: mapping, backmapping and visualization of coarse-grained models.
    Machado MR; Pantano S
    Bioinformatics; 2016 May; 32(10):1568-70. PubMed ID: 26773132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.
    Collins KD
    Biophys Chem; 2012 Jun; 167():43-59. PubMed ID: 22608112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coarse-grained model of DNA with explicit solvation by water and ions.
    DeMille RC; Cheatham TE; Molinero V
    J Phys Chem B; 2011 Jan; 115(1):132-42. PubMed ID: 21155552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.