BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26575441)

  • 1. Identification of Nanoparticle Prototypes and Archetypes.
    Fernandez M; Barnard AS
    ACS Nano; 2015 Dec; 9(12):11980-92. PubMed ID: 26575441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.
    Fernandez M; Wilson HF; Barnard AS
    Nanoscale; 2017 Jan; 9(2):832-843. PubMed ID: 27991626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning.
    Yan T; Sun B; Barnard AS
    Nanoscale; 2018 Nov; 10(46):21818-21826. PubMed ID: 30452032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling polydispersive ensembles of diamond nanoparticles.
    Barnard AS
    Nanotechnology; 2013 Mar; 24(8):085703. PubMed ID: 23377041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes.
    Shi H; Rees RJ; Per MC; Barnard AS
    Nanoscale; 2015 Feb; 7(5):1864-71. PubMed ID: 25521251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon sequestration in Synechococcus Sp.: from molecular machines to hierarchical modeling.
    Heffelfinger GS; Martino A; Gorin A; Xu Y; Rintoul MD; Geist A; Al-Hashimi HM; Davidson GS; Faulon JL; Frink LJ; Haaland DM; Hart WE; Jakobsson E; Lane T; Li M; Locascio P; Olken F; Olman V; Palenik B; Plimpton SJ; Roe DC; Samatova NF; Shah M; Shoshoni A; Strauss CE; Thomas EV; Timlin JA; Xu D
    OMICS; 2002; 6(4):305-30. PubMed ID: 12626091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pure and representative types of disordered platinum nanoparticles from machine learning.
    Parker AJ; Motevalli B; Opletal G; Barnard AS
    Nanotechnology; 2021 Feb; 32(9):095404. PubMed ID: 33212430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarifying stability, probability and population in nanoparticle ensembles.
    Barnard AS
    Nanoscale; 2014 Sep; 6(17):9983-90. PubMed ID: 24831157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal nanohydrophobicity predictions using virtual nanoparticle library.
    Wang W; Yan X; Zhao L; Russo DP; Wang S; Liu Y; Sedykh A; Zhao X; Yan B; Zhu H
    J Cheminform; 2019 Jan; 11(1):6. PubMed ID: 30659400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screw dislocation driven growth of nanomaterials.
    Meng F; Morin SA; Forticaux A; Jin S
    Acc Chem Res; 2013 Jul; 46(7):1616-26. PubMed ID: 23738750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines.
    Warheit DB; Donner EM
    Nanotoxicology; 2010 Dec; 4():409-13. PubMed ID: 20925448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications.
    Chan EM
    Chem Soc Rev; 2015 Mar; 44(6):1653-79. PubMed ID: 25287124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing peptide-nanomaterial interactions.
    Slocik JM; Naik RR
    Chem Soc Rev; 2010 Sep; 39(9):3454-63. PubMed ID: 20672177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.