These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Sašek V; Nováková M; Jindřichová B; Bóka K; Valentová O; Burketová L Mol Plant Microbe Interact; 2012 Sep; 25(9):1238-50. PubMed ID: 22624662 [TBL] [Abstract][Full Text] [Related]
3. Hormonal Responses to Susceptible, Intermediate, and Resistant Interactions in the Yang C; Fernando WGD Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946839 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Haddadi P; Ma L; Wang H; Borhan MH Mol Plant Pathol; 2016 Oct; 17(8):1196-210. PubMed ID: 26679637 [TBL] [Abstract][Full Text] [Related]
5. Leptosphaeria maculans isolates with variations in AvrLm1 and AvrLm4 effector genes induce differences in defence responses but not in resistance phenotypes in cultivars carrying the Rlm7 gene. Stotz HU; Ali AM; de Lope LR; Rafi MS; Mitrousia GK; Huang YJ; Fitt BDL Pest Manag Sci; 2024 May; 80(5):2435-2442. PubMed ID: 36869585 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the effector AvrLm4-7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins. Blondeau K; Blaise F; Graille M; Kale SD; Linglin J; Ollivier B; Labarde A; Lazar N; Daverdin G; Balesdent MH; Choi DH; Tyler BM; Rouxel T; van Tilbeurgh H; Fudal I Plant J; 2015 Aug; 83(4):610-24. PubMed ID: 26082394 [TBL] [Abstract][Full Text] [Related]
7. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. Lowe RG; Cassin A; Grandaubert J; Clark BL; Van de Wouw AP; Rouxel T; Howlett BJ PLoS One; 2014; 9(7):e103098. PubMed ID: 25068644 [TBL] [Abstract][Full Text] [Related]
8. Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans. Plissonneau C; Blaise F; Ollivier B; Leflon M; Carpezat J; Rouxel T; Balesdent MH Mol Ecol; 2017 Apr; 26(7):2183-2198. PubMed ID: 28160497 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Bohman S; Staal J; Thomma BP; Wang M; Dixelius C Plant J; 2004 Jan; 37(1):9-20. PubMed ID: 14675428 [TBL] [Abstract][Full Text] [Related]
10. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. Ghanbarnia K; Ma L; Larkan NJ; Haddadi P; Fernando WGD; Borhan MH Mol Plant Pathol; 2018 Jul; 19(7):1754-1764. PubMed ID: 29330918 [TBL] [Abstract][Full Text] [Related]
11. Combining R gene and quantitative resistance increases effectiveness of cultivar resistance against Leptosphaeria maculans in Brassica napus in different environments. Huang YJ; Mitrousia GK; Sidique SNM; Qi A; Fitt BDL PLoS One; 2018; 13(5):e0197752. PubMed ID: 29791484 [TBL] [Abstract][Full Text] [Related]
12. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. Plissonneau C; Daverdin G; Ollivier B; Blaise F; Degrave A; Fudal I; Rouxel T; Balesdent MH New Phytol; 2016 Mar; 209(4):1613-24. PubMed ID: 26592855 [TBL] [Abstract][Full Text] [Related]
13. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus. Nováková M; Kim PD; Šašek V; Burketová L; Jindřichová B; Šantrůček J; Valentová O Biotechnol Prog; 2016 Jul; 32(4):918-28. PubMed ID: 27009514 [TBL] [Abstract][Full Text] [Related]
14. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans. Darma R; Lutz A; Elliott CE; Idnurm A Fungal Genet Biol; 2019 Sep; 130():62-71. PubMed ID: 31034868 [TBL] [Abstract][Full Text] [Related]
16. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Parlange F; Daverdin G; Fudal I; Kuhn ML; Balesdent MH; Blaise F; Grezes-Besset B; Rouxel T Mol Microbiol; 2009 Feb; 71(4):851-63. PubMed ID: 19170874 [TBL] [Abstract][Full Text] [Related]
17. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. Gervais J; Plissonneau C; Linglin J; Meyer M; Labadie K; Cruaud C; Fudal I; Rouxel T; Balesdent MH Mol Plant Pathol; 2017 Oct; 18(8):1113-1126. PubMed ID: 27474899 [TBL] [Abstract][Full Text] [Related]
18. LmCBP1, a secreted chitin-binding protein, is required for the pathogenicity of Leptosphaeria maculans on Brassica napus. Liu F; Selin C; Zou Z; Dilantha Fernando WG Fungal Genet Biol; 2020 Mar; 136():103320. PubMed ID: 31863838 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Callose Deposition and Analysis of the Callose Synthase Gene Family of Liu F; Zou Z; Fernando WGD Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30486431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]