BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26575554)

  • 1. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding.
    Flores-Canales JC; Kurnikova M
    J Chem Theory Comput; 2015 Jun; 11(6):2550-9. PubMed ID: 26575554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers.
    Flores-Canales JC; Kurnikova M
    J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics.
    Doshi U; Hamelberg D
    Biochim Biophys Acta; 2015 May; 1850(5):878-888. PubMed ID: 25153688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.
    Doshi U; Hamelberg D
    J Phys Chem Lett; 2014 Apr; 5(7):1217-24. PubMed ID: 26274474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.
    Meyer T; Knapp EW
    J Chem Theory Comput; 2015 Jun; 11(6):2827-40. PubMed ID: 26575575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.
    Kurnikov IV; Kyrychenko A; Flores-Canales JC; Rodnin MV; Simakov N; Vargas-Uribe M; Posokhov YO; Kurnikova M; Ladokhin AS
    J Mol Biol; 2013 Aug; 425(15):2752-64. PubMed ID: 23648837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated molecular dynamics simulations of protein folding.
    Miao Y; Feixas F; Eun C; McCammon JA
    J Comput Chem; 2015 Jul; 36(20):1536-49. PubMed ID: 26096263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a buried ion pair in the hydrophobic core of a protein: An insight from constant pH molecular dynamics study.
    Pathak AK
    Biopolymers; 2015 Mar; 103(3):148-57. PubMed ID: 25363335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Hamiltonian Replica Exchange MD Protocol to Enhance Protein Conformational Space Sampling.
    Affentranger R; Tavernelli I; Di Iorio EE
    J Chem Theory Comput; 2006 Mar; 2(2):217-28. PubMed ID: 26626508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations.
    Sinko W; de Oliveira CA; Pierce LC; McCammon JA
    J Chem Theory Comput; 2012 Jan; 8(1):17-23. PubMed ID: 22241967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Conformational Sampling in Explicit Solvent with Gaussian Biased Accelerated Molecular Dynamics.
    Shao Q; Zhu W
    J Chem Theory Comput; 2017 Sep; 13(9):4240-4252. PubMed ID: 28759210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study.
    Baler K; Martin OA; Carignano MA; Ameer GA; Vila JA; Szleifer I
    J Phys Chem B; 2014 Jan; 118(4):921-30. PubMed ID: 24393011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations.
    Anandakrishnan R; Drozdetski A; Walker RC; Onufriev AV
    Biophys J; 2015 Mar; 108(5):1153-64. PubMed ID: 25762327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study.
    de Oliveira CA; Hamelberg D; McCammon JA
    J Chem Phys; 2007 Nov; 127(17):175105. PubMed ID: 17994855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hierarchical Approach to Predict Conformation-Dependent Histidine Protonation States in Stable and Flexible Proteins.
    Sakipov SN; Flores-Canales JC; Kurnikova MG
    J Phys Chem B; 2019 Jun; 123(24):5024-5034. PubMed ID: 31095377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.