These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26575575)

  • 21. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constant pH molecular dynamics in generalized Born implicit solvent.
    Mongan J; Case DA; McCammon JA
    J Comput Chem; 2004 Dec; 25(16):2038-48. PubMed ID: 15481090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of 1H NMR spectroscopy and computer simulations To analyze histidine pKa changes in a protein tyrosine phosphatase: experimental and theoretical determination of electrostatic properties in a small protein.
    Tishmack PA; Bashford D; Harms E; Van Etten RL
    Biochemistry; 1997 Sep; 36(39):11984-94. PubMed ID: 9305993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast empirical pKa prediction by Ewald summation.
    Krieger E; Nielsen JE; Spronk CA; Vriend G
    J Mol Graph Model; 2006 Dec; 25(4):481-6. PubMed ID: 16644253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the Accuracy of Explicit Solvent Constant pH Molecular Dynamics Simulations for Peptides.
    Dobrev P; Vemulapalli SPB; Nath N; Griesinger C; Grubmüller H
    J Chem Theory Comput; 2020 Apr; 16(4):2561-2569. PubMed ID: 32192342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
    Goh GB; Hulbert BS; Zhou H; Brooks CL
    Proteins; 2014 Jul; 82(7):1319-31. PubMed ID: 24375620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calmodulin readily switches conformation upon protonating high pKa acidic residues.
    Negi S; Aykut AO; Atilgan AR; Atilgan C
    J Phys Chem B; 2012 Jun; 116(24):7145-53. PubMed ID: 22624501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the Protonation State on the Structure and Dynamics of Albumin.
    Díaz N; Suárez D
    J Chem Theory Comput; 2016 Apr; 12(4):1972-88. PubMed ID: 27014836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding.
    Flores-Canales JC; Kurnikova M
    J Chem Theory Comput; 2015 Jun; 11(6):2550-9. PubMed ID: 26575554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Molecular dynamics method for proteins with ionization-conformation coupling and equilibrium titration].
    Vorob'ev IuN
    Mol Biol (Mosk); 2011; 45(2):346-55. PubMed ID: 21634122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins.
    Gunner MR; Baker NA
    Methods Enzymol; 2016; 578():1-20. PubMed ID: 27497160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins.
    Mehler EL; Guarnieri F
    Biophys J; 1999 Jul; 77(1):3-22. PubMed ID: 10388736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.
    Neves-Petersen MT; Petersen SB
    Biotechnol Annu Rev; 2003; 9():315-95. PubMed ID: 14650935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of pKa shifts in proteins using a combination of molecular mechanical and continuum solvent calculations.
    Kuhn B; Kollman PA; Stahl M
    J Comput Chem; 2004 Nov; 25(15):1865-72. PubMed ID: 15376253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DelPhiPKa: Including salt in the calculations and enabling polar residues to titrate.
    Pahari S; Sun L; Basu S; Alexov E
    Proteins; 2018 Dec; 86(12):1277-1283. PubMed ID: 30252159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the NMR analysis of pKa values in the unfolded state of proteins by extrapolation to zero denaturant.
    Quijada J; López G; Versace R; Ramírez L; Tasayco ML
    Biophys Chem; 2007 Sep; 129(2-3):242-50. PubMed ID: 17611012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.