These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26575598)

  • 1. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.
    Mosayebi M; Louis AA; Doye JP; Ouldridge TE
    ACS Nano; 2015 Dec; 9(12):11993-2003. PubMed ID: 26575598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore force spectroscopy on DNA duplexes.
    Jetha NN; Wiggin M; Marziali A
    Methods Mol Biol; 2009; 544():129-50. PubMed ID: 19488698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanics of base pair unzipping in the DNA duplex.
    Volkov SN; Paramonova EV; Yakubovich AV; Solov'yov AV
    J Phys Condens Matter; 2012 Jan; 24(3):035104. PubMed ID: 22173097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-driven separation of short double-stranded DNA.
    Ho D; Zimmermann JL; Dehmelt FA; Steinbach U; Erdmann M; Severin P; Falter K; Gaub HE
    Biophys J; 2009 Dec; 97(12):3158-67. PubMed ID: 20006953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences.
    Burmistrova A; Fresch B; Sluysmans D; De Pauw E; Remacle F; Duwez AS
    Nanoscale; 2016 Jun; 8(22):11718-26. PubMed ID: 27221618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretching and twisting of the DNA duplexes in coarse-grained dynamical models.
    Niewieczerzał S; Cieplak M
    J Phys Condens Matter; 2009 Nov; 21(47):474221. PubMed ID: 21832500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.
    Ouldridge TE; Hoare RL; Louis AA; Doye JP; Bath J; Turberfield AJ
    ACS Nano; 2013 Mar; 7(3):2479-90. PubMed ID: 23414564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Well Can DNA Rupture DNA? Shearing and Unzipping Forces inside DNA Nanostructures.
    Tee SR; Wang Z
    ACS Omega; 2018 Jan; 3(1):292-301. PubMed ID: 30023776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end attraction of duplex DNA.
    Maffeo C; Luan B; Aksimentiev A
    Nucleic Acids Res; 2012 May; 40(9):3812-21. PubMed ID: 22241779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QCM-based rupture force measurement as a tool to study DNA dehybridization and duplex stability.
    Dultsev FN; Kolosovsky EA; Lomzov AA; Pyshnyi DV
    Anal Bioanal Chem; 2017 Feb; 409(4):891-901. PubMed ID: 27838753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration that the shear force required to separate short double-stranded DNA does not increase significantly with sequence length for sequences longer than 25 base pairs.
    Hatch K; Danilowicz C; Coljee V; Prentiss M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011920. PubMed ID: 18763995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rupture force between the third strand and the double strand within a triplex DNA.
    Ling L; Butt HJ; Berger R
    J Am Chem Soc; 2004 Nov; 126(43):13992-7. PubMed ID: 15506761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force and kinetic barriers to unzipping of the DNA double helix.
    Cocco S; Monasson R; Marko JF
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8608-13. PubMed ID: 11447279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Force Spectroscopy of an Artificial DNA Duplex Comprising a Silver(I)-Mediated Base Pair.
    Tan X; Litau S; Zhang X; Müller J
    Langmuir; 2015 Oct; 31(41):11305-10. PubMed ID: 26421907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of base binding strength and base stacking interaction of DNA duplex using atomic force microscope.
    Zhang TB; Zhang CL; Dong ZL; Guan YF
    Sci Rep; 2015 Mar; 5():9143. PubMed ID: 25772017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-covalent duplex to duplex crosslinking of DNA in solution revealed by single molecule force spectroscopy.
    Rackham BD; Howell LA; Round AN; Searcey M
    Org Biomol Chem; 2013 Dec; 11(48):8340-7. PubMed ID: 24158749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA unzipped under a constant force exhibits multiple metastable intermediates.
    Danilowicz C; Coljee VW; Bouzigues C; Lubensky DK; Nelson DR; Prentiss M
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1694-9. PubMed ID: 12574500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic force spectroscopy of photoswitch-modified DNA.
    Sengupta E; Yan Y; Wang X; Munechika K; Ginger DS
    ACS Nano; 2014 Mar; 8(3):2625-31. PubMed ID: 24502655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.