These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26575728)
1. Linear Response Path Following: A Molecular Dynamics Method To Simulate Global Conformational Changes of Protein upon Ligand Binding. Tamura K; Hayashi S J Chem Theory Comput; 2015 Jul; 11(7):2900-17. PubMed ID: 26575728 [TBL] [Abstract][Full Text] [Related]
2. A computational method to simulate global conformational changes of proteins induced by cosolvent. Tanimoto S; Tamura K; Hayashi S; Yoshida N; Nakano H J Comput Chem; 2021 Mar; 42(8):552-563. PubMed ID: 33433010 [TBL] [Abstract][Full Text] [Related]
3. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin. Atilgan AR; Aykut AO; Atilgan C J Chem Phys; 2011 Oct; 135(15):155102. PubMed ID: 22029336 [TBL] [Abstract][Full Text] [Related]
5. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics. Wang J; Shao Q; Xu Z; Liu Y; Yang Z; Cossins BP; Jiang H; Chen K; Shi J; Zhu W J Phys Chem B; 2014 Jan; 118(1):134-43. PubMed ID: 24350625 [TBL] [Abstract][Full Text] [Related]
6. Conformational dynamics of yeast calmodulin in the Ca(2+)-bound state probed using NMR relaxation dispersion. Ogura K; Okamura H; Katahira M; Katoh E; Inagaki F FEBS Lett; 2012 Jul; 586(16):2548-54. PubMed ID: 22750477 [TBL] [Abstract][Full Text] [Related]
7. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain-an atomic level characterization. Zhao L; Lai L; Zhang Z Phys Chem Chem Phys; 2019 Sep; 21(36):19795-19804. PubMed ID: 31482888 [TBL] [Abstract][Full Text] [Related]
8. Toward an Enhanced Sampling Molecular Dynamics Method for Studying Ligand-Induced Conformational Changes in Proteins. Andersen OJ; Grouleff J; Needham P; Walker RC; Jensen F J Phys Chem B; 2015 Nov; 119(46):14594-603. PubMed ID: 26482713 [TBL] [Abstract][Full Text] [Related]
9. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins. Ababou A; Zaleska M Arch Biochem Biophys; 2015 Dec; 587():61-9. PubMed ID: 26494044 [TBL] [Abstract][Full Text] [Related]
10. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin. Ovchinnikov V; Karplus M J Phys Chem B; 2012 Jul; 116(29):8584-603. PubMed ID: 22409258 [TBL] [Abstract][Full Text] [Related]
11. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin. Tripathi S; Portman JJ J Chem Phys; 2008 May; 128(20):205104. PubMed ID: 18513047 [TBL] [Abstract][Full Text] [Related]
12. Mapping central α-helix linker mediated conformational transition pathway of calmodulin via simple computational approach. Wang J; Peng S; Cossins BP; Liao X; Chen K; Shao Q; Zhu X; Shi J; Zhu W J Phys Chem B; 2014 Aug; 118(32):9677-85. PubMed ID: 25120210 [TBL] [Abstract][Full Text] [Related]
13. An approximate method in using molecular mechanics simulations to study slow protein conformational changes. Yang L; Gao YQ J Phys Chem B; 2007 Mar; 111(11):2969-75. PubMed ID: 17319713 [TBL] [Abstract][Full Text] [Related]
14. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins. Kurkcuoglu Z; Doruker P PLoS One; 2016; 11(6):e0158063. PubMed ID: 27348230 [TBL] [Abstract][Full Text] [Related]
15. Simple, yet powerful methodologies for conformational sampling of proteins. Harada R; Takano Y; Baba T; Shigeta Y Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594 [TBL] [Abstract][Full Text] [Related]
16. Protein Conformational Transitions from All-Atom Adaptively Biased Path Optimization. Wu H; Post CB J Chem Theory Comput; 2018 Oct; 14(10):5372-5382. PubMed ID: 30222340 [TBL] [Abstract][Full Text] [Related]
17. Ca2+ binding and conformational changes in a calmodulin domain. Evenäs J; Malmendal A; Thulin E; Carlström G; Forsén S Biochemistry; 1998 Sep; 37(39):13744-54. PubMed ID: 9753463 [TBL] [Abstract][Full Text] [Related]
18. Free-energy landscapes of protein domain movements upon ligand binding. Kondo HX; Okimoto N; Morimoto G; Taiji M J Phys Chem B; 2011 Jun; 115(23):7629-36. PubMed ID: 21608983 [TBL] [Abstract][Full Text] [Related]
19. Geometry-based sampling of conformational transitions in proteins. Seeliger D; Haas J; de Groot BL Structure; 2007 Nov; 15(11):1482-92. PubMed ID: 17997973 [TBL] [Abstract][Full Text] [Related]
20. Quantum clustering and network analysis of MD simulation trajectories to probe the conformational ensembles of protein-ligand interactions. Bhattacharyya M; Vishveshwara S Mol Biosyst; 2011 Jul; 7(7):2320-30. PubMed ID: 21617814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]