BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26575735)

  • 1. Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide-Expand-Consolidate CCSD(T) Model.
    Eriksen JJ; Baudin P; Ettenhuber P; Kristensen K; Kjærgaard T; Jørgensen P
    J Chem Theory Comput; 2015 Jul; 11(7):2984-93. PubMed ID: 26575735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient and near linear scaling pair natural orbital based local coupled cluster method.
    Riplinger C; Neese F
    J Chem Phys; 2013 Jan; 138(3):034106. PubMed ID: 23343267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Locality Analysis of the Divide-Expand-Consolidate Coupled Cluster Amplitude Equations.
    Kristensen K; Ziółkowski M; Jansík B; Kjærgaard T; Jørgensen P
    J Chem Theory Comput; 2011 Jun; 7(6):1677-94. PubMed ID: 26596432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural triple excitations in local coupled cluster calculations with pair natural orbitals.
    Riplinger C; Sandhoefer B; Hansen A; Neese F
    J Chem Phys; 2013 Oct; 139(13):134101. PubMed ID: 24116546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coupled cluster singles, doubles, and a hybrid treatment of connected triples based on the split virtual orbitals.
    Shen J; Kou Z; Xu E; Li S
    J Chem Phys; 2012 Jan; 136(4):044101. PubMed ID: 22299855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T
    Guo Y; Riplinger C; Liakos DG; Becker U; Saitow M; Neese F
    J Chem Phys; 2020 Jan; 152(2):024116. PubMed ID: 31941297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled cluster approach with a hybrid treatment of connected triple excitations for bond-breaking potential energy surfaces.
    Shen J; Xu E; Kou Z; Li S
    J Chem Phys; 2010 Mar; 132(11):114115. PubMed ID: 20331289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].
    Guo Y; Riplinger C; Becker U; Liakos DG; Minenkov Y; Cavallo L; Neese F
    J Chem Phys; 2018 Jan; 148(1):011101. PubMed ID: 29306283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.
    Baudin P; Ettenhuber P; Reine S; Kristensen K; Kjærgaard T
    J Chem Phys; 2016 Feb; 144(5):054102. PubMed ID: 26851903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Massively Parallel Implementation of the CCSD(T) Method Using the Resolution-of-the-Identity Approximation and a Hybrid Distributed/Shared Memory Parallelization Model.
    Datta D; Gordon MS
    J Chem Theory Comput; 2021 Aug; 17(8):4799-4822. PubMed ID: 34279094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The orbital-specific virtual local triples correction: OSV-L(T).
    Schütz M; Yang J; Chan GK; Manby FR; Werner HJ
    J Chem Phys; 2013 Feb; 138(5):054109. PubMed ID: 23406100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory.
    Liakos DG; Neese F
    J Chem Theory Comput; 2015 Sep; 11(9):4054-63. PubMed ID: 26575901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient linear-scaling CCSD(T) method based on local natural orbitals.
    Rolik Z; Szegedy L; Ladjánszki I; Ladóczki B; Kállay M
    J Chem Phys; 2013 Sep; 139(9):094105. PubMed ID: 24028100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures.
    Anisimov VM; Bauer GH; Chadalavada K; Olson RM; Glenski JW; Kramer WT; Aprà E; Kowalski K
    J Chem Theory Comput; 2014 Oct; 10(10):4307-16. PubMed ID: 26588127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coupled cluster approach with a hybrid treatment of connected triple excitations based on the restricted Hartree-Fock reference.
    Shen J; Kou Z; Xu E; Li S
    J Chem Phys; 2011 Jan; 134(4):044134. PubMed ID: 21280714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An orbital-invariant and strictly size extensive post-Hartree-Fock correlation functional.
    Kollmar C; Neese F
    J Chem Phys; 2011 Aug; 135(8):084102. PubMed ID: 21895154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals.
    Verma P; Perera A; Morales JA
    J Chem Phys; 2013 Nov; 139(17):174103. PubMed ID: 24206283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Calculation of CCSD and CCSD(T) Analytic First and Second Derivatives.
    Harding ME; Metzroth T; Gauss J; Auer AA
    J Chem Theory Comput; 2008 Jan; 4(1):64-74. PubMed ID: 26619980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.
    Saitow M; Becker U; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2017 Apr; 146(16):164105. PubMed ID: 28456208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.