These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26575751)

  • 1. Semiempirical Molecular Dynamics (SEMD) I: Midpoint-Based Parallel Sparse Matrix-Matrix Multiplication Algorithm for Matrices with Decay.
    Weber V; Laino T; Pozdneev A; Fedulova I; Curioni A
    J Chem Theory Comput; 2015 Jul; 11(7):3145-52. PubMed ID: 26575751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hartree-Fock calculations with linearly scaling memory usage.
    Rudberg E; Rubensson EH; Sałek P
    J Chem Phys; 2008 May; 128(18):184106. PubMed ID: 18532798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations.
    Birgin EG; Martınez JM; Martınez L; Rocha GB
    J Chem Theory Comput; 2013 Feb; 9(2):1043-51. PubMed ID: 26588747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS.
    Luo Z; Qin X; Wan L; Hu W; Yang J
    Front Chem; 2020; 8():589910. PubMed ID: 33324611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel parallel algorithm for large-scale Fock matrix construction with small locally distributed memory architectures: RT parallel algorithm.
    Takashima H; Yamada S; Obara S; Kitamura K; Inabata S; Miyakawa N; Tanabe K; Nagashima U
    J Comput Chem; 2002 Nov; 23(14):1337-46. PubMed ID: 12214316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bringing about matrix sparsity in linear-scaling electronic structure calculations.
    Rubensson EH; Rudberg E
    J Comput Chem; 2011 May; 32(7):1411-23. PubMed ID: 21284001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational algorithms for linear algebra.
    Xu X; Sun J; Endo S; Li Y; Benjamin SC; Yuan X
    Sci Bull (Beijing); 2021 Nov; 66(21):2181-2188. PubMed ID: 36654109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.
    Mniszewski SM; Cawkwell MJ; Wall ME; Mohd-Yusof J; Bock N; Germann TC; Niklasson AM
    J Chem Theory Comput; 2015 Oct; 11(10):4644-54. PubMed ID: 26574255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
    Fernandes KD; Renison CA; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1399-409. PubMed ID: 25975763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
    Cawkwell MJ; Sanville EJ; Mniszewski SM; Niklasson AM
    J Chem Theory Comput; 2012 Nov; 8(11):4094-101. PubMed ID: 26605576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient algorithm for energy gradients and orbital optimization in valence bond theory.
    Song L; Song J; Mo Y; Wu W
    J Comput Chem; 2009 Feb; 30(3):399-406. PubMed ID: 18629879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.
    Kussmann J; Ochsenfeld C
    J Chem Phys; 2007 Aug; 127(5):054103. PubMed ID: 17688330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package.
    Marion A; Gokcan H; Monard G
    J Chem Inf Model; 2019 Jan; 59(1):206-214. PubMed ID: 30433776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA.
    Kubař T; Elstner M
    Phys Chem Chem Phys; 2013 Apr; 15(16):5794-813. PubMed ID: 23493847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.
    Scemama A; Renon N; Rapacioli M
    J Chem Theory Comput; 2014 Jun; 10(6):2344-54. PubMed ID: 26580754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.
    Kussmann J; Ochsenfeld C
    J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimum strategy for solution chemistry using semiempirical molecular orbital method. II. Primary importance of reproducing electrostatic interaction in the QM/MM framework.
    Koyano Y; Takenaka N; Nakagawa Y; Nagaoka M
    J Comput Chem; 2010 Nov; 31(14):2628-41. PubMed ID: 20740563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems.
    Aarons J; Skylaris CK
    J Chem Phys; 2018 Feb; 148(7):074107. PubMed ID: 29471650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.