These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26575757)

  • 1. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.
    Tan YS; Spring DR; Abell C; Verma CS
    J Chem Theory Comput; 2015 Jul; 11(7):3199-210. PubMed ID: 26575757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PlayMolecule CrypticScout: Predicting Protein Cryptic Sites Using Mixed-Solvent Molecular Simulations.
    Martinez-Rosell G; Lovera S; Sands ZA; De Fabritiis G
    J Chem Inf Model; 2020 Apr; 60(4):2314-2324. PubMed ID: 32175736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.
    Freed AS; Garde S; Cramer SM
    J Phys Chem B; 2011 Nov; 115(45):13320-7. PubMed ID: 21942536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands.
    Lockhart C; Kim S; Klimov DK
    J Phys Chem B; 2012 Nov; 116(43):12922-32. PubMed ID: 23051147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Halogen-Protein Interactions in Co-Solvent Molecular Dynamics Simulations.
    Yang Y; Mahmoud AH; Lill MA
    J Chem Inf Model; 2019 Jan; 59(1):38-42. PubMed ID: 30525593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-water interactions in MD simulations: POPS/POPSCOMP solvent accessibility analysis, solvation forces and hydration sites.
    Fornili A; Autore F; Chakroun N; Martinez P; Fraternali F
    Methods Mol Biol; 2012; 819():375-92. PubMed ID: 22183548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design.
    Tan YS; Reeks J; Brown CJ; Thean D; Ferrer Gago FJ; Yuen TY; Goh ET; Lee XE; Jennings CE; Joseph TL; Lakshminarayanan R; Lane DP; Noble ME; Verma CS
    J Phys Chem Lett; 2016 Sep; 7(17):3452-7. PubMed ID: 27532490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics approach to study the importance of solvent in protein interactions.
    Samsonov S; Teyra J; Pisabarro MT
    Proteins; 2008 Nov; 73(2):515-25. PubMed ID: 18452208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter choice matters: validating probe parameters for use in mixed-solvent simulations.
    Lexa KW; Goh GB; Carlson HA
    J Chem Inf Model; 2014 Aug; 54(8):2190-9. PubMed ID: 25058662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steered molecular dynamics simulations of ligand-receptor interaction in lipocalins.
    Kalikka J; Akola J
    Eur Biophys J; 2011 Feb; 40(2):181-94. PubMed ID: 21072508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins.
    Zuzic L; Marzinek JK; Warwicker J; Bond PJ
    J Chem Theory Comput; 2020 Sep; 16(9):5948-5959. PubMed ID: 32786908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
    Ghanakota P; Carlson HA
    J Phys Chem B; 2016 Aug; 120(33):8685-95. PubMed ID: 27258368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a spherical harmonics expansion approach for calculating ligand density distributions around proteins.
    Parimal S; Cramer SM; Garde S
    J Phys Chem B; 2014 Nov; 118(46):13066-76. PubMed ID: 25198149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dewetting-controlled binding of ligands to hydrophobic pockets.
    Setny P; Wang Z; Cheng LT; Li B; McCammon JA; Dzubiella J
    Phys Rev Lett; 2009 Oct; 103(18):187801. PubMed ID: 19905832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The universality of β-hairpin misfolding indicated by molecular dynamics simulations.
    Shao Q; Wang J; Shi J; Zhu W
    J Chem Phys; 2013 Oct; 139(16):165103. PubMed ID: 24182084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.