These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26575769)

  • 1. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
    Aradi B; Niklasson AM; Frauenheim T
    J Chem Theory Comput; 2015 Jul; 11(7):3357-63. PubMed ID: 26575769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-Matrix Based Extended Lagrangian Born-Oppenheimer Molecular Dynamics.
    Niklasson AMN
    J Chem Theory Comput; 2020 Jun; 16(6):3628-3640. PubMed ID: 32364707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization.
    Souvatzis P; Niklasson AM
    J Chem Phys; 2013 Dec; 139(21):214102. PubMed ID: 24320359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.
    Cawkwell MJ; Coe JD; Yadav SK; Liu XY; Niklasson AM
    J Chem Theory Comput; 2015 Jun; 11(6):2697-704. PubMed ID: 26575565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation extended Lagrangian first principles molecular dynamics.
    Niklasson AMN
    J Chem Phys; 2017 Aug; 147(5):054103. PubMed ID: 28789552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.
    Cawkwell MJ; Niklasson AM; Dattelbaum DM
    J Chem Phys; 2015 Feb; 142(6):064512. PubMed ID: 25681928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics.
    Niklasson AM; Cawkwell MJ
    J Chem Phys; 2014 Oct; 141(16):164123. PubMed ID: 25362288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
    Martínez E; Cawkwell MJ; Voter AF; Niklasson AM
    J Chem Phys; 2015 Apr; 142(15):154120. PubMed ID: 25903879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shadow Molecular Dynamics and Atomic Cluster Expansions for Flexible Charge Models.
    Goff J; Zhang Y; Negre C; Rohskopf A; Niklasson AMN
    J Chem Theory Comput; 2023 Jul; 19(13):4255-4272. PubMed ID: 37382528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.
    Hirakawa T; Suzuki T; Bowler DR; Miyazaki T
    J Phys Condens Matter; 2017 Oct; 29(40):405901. PubMed ID: 28726683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First principles molecular dynamics without self-consistent field optimization.
    Souvatzis P; Niklasson AM
    J Chem Phys; 2014 Jan; 140(4):044117. PubMed ID: 25669515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Lagrangian Excited State Molecular Dynamics.
    Bjorgaard JA; Sheppard D; Tretiak S; Niklasson AMN
    J Chem Theory Comput; 2018 Feb; 14(2):799-806. PubMed ID: 29316401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex.
    Maity S; Bold BM; Prajapati JD; Sokolov M; Kubař T; Elstner M; Kleinekathöfer U
    J Phys Chem Lett; 2020 Oct; 11(20):8660-8667. PubMed ID: 32991176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.
    Nam K
    J Chem Theory Comput; 2013 Aug; 9(8):3393-403. PubMed ID: 26584095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-based quantum response theory and shadow Born-Oppenheimer molecular dynamics.
    Negre CFA; Wall ME; Niklasson AMN
    J Chem Phys; 2023 Feb; 158(7):074108. PubMed ID: 36813723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method.
    Zheng G; Niklasson AM; Karplus M
    J Chem Phys; 2011 Jul; 135(4):044122. PubMed ID: 21806105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.