These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26575771)

  • 21. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study.
    Tachikawa H
    Chemphyschem; 2014 Jun; 15(8):1604-10. PubMed ID: 24616076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the electrochemical behavior of lithium nitrite in acetonitrile with quantum chemical methods.
    Bryantsev VS; Uddin J; Giordani V; Walker W; Chase GV; Addison D
    J Am Chem Soc; 2014 Feb; 136(8):3087-96. PubMed ID: 24490805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing Implicit and Explicit Polarizable Solvation Models for Nuclear-Electronic Orbital Systems: Quantum Proton Polarization and Solvation Energetics.
    Lambros E; Link B; Chow M; Lipparini F; Hammes-Schiffer S; Li X
    J Phys Chem A; 2023 Nov; 127(44):9322-9333. PubMed ID: 37889479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling solvation effects in real-space and real-time within density functional approaches.
    Delgado A; Corni S; Pittalis S; Rozzi CA
    J Chem Phys; 2015 Oct; 143(14):144111. PubMed ID: 26472367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical Solvent Reorganization Energies in the Framework of the Polarizable Continuum Model.
    Ghosh S; Horvath S; Soudackov AV; Hammes-Schiffer S
    J Chem Theory Comput; 2014 May; 10(5):2091-102. PubMed ID: 26580536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.
    Longo RC; Kong FT; KC S; Park MS; Yoon J; Yeon DH; Park JH; Doo SG; Cho K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11218-27. PubMed ID: 24776820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution.
    Caro MA; Lopez-Acevedo O; Laurila T
    J Chem Theory Comput; 2017 Aug; 13(8):3432-3441. PubMed ID: 28715635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absorption and Emission Spectra of Solvated Molecules with the EOM-CCSD-PCM Method.
    Caricato M
    J Chem Theory Comput; 2012 Nov; 8(11):4494-502. PubMed ID: 26605609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic Cyclic Voltammograms Based on
    Hörmann NG; Reuter K
    J Chem Theory Comput; 2021 Mar; 17(3):1782-1794. PubMed ID: 33606513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute solvation free energy of Li+ and Na+ ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study.
    Westphal E; Pliego JR
    J Chem Phys; 2005 Aug; 123(7):074508. PubMed ID: 16229602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.
    Tasaki K
    J Phys Chem B; 2005 Feb; 109(7):2920-33. PubMed ID: 16851305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo simulations of the solution structure of simple alcohols in water-acetonitrile mixtures.
    Nagy PI; Erhardt PW
    J Phys Chem B; 2005 Mar; 109(12):5855-72. PubMed ID: 16851638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved Efficiency of Replica Exchange Simulations through Use of a Hybrid Explicit/Implicit Solvation Model.
    Okur A; Wickstrom L; Layten M; Geney R; Song K; Hornak V; Simmerling C
    J Chem Theory Comput; 2006 Mar; 2(2):420-33. PubMed ID: 26626529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models.
    Sundararaman R; Gunceler D; Arias TA
    J Chem Phys; 2014 Oct; 141(13):134105. PubMed ID: 25296782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Density functional theory-based electrochemical models for the oxygen reduction reaction: comparison of modeling approaches for electric field and solvent effects.
    Yeh KY; Janik MJ
    J Comput Chem; 2011 Dec; 32(16):3399-408. PubMed ID: 21898466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spiropyran to merocyanine conversion: explicit versus implicit solvent modeling.
    Eilmes A
    J Phys Chem A; 2013 Mar; 117(12):2629-35. PubMed ID: 23458669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.