These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26575783)

  • 21. RNA solvation: a molecular dynamics simulation perspective.
    Auffinger P; Westhof E
    Biopolymers; 2000-2001; 56(4):266-74. PubMed ID: 11754340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-bead coarse-grained model for RNA dynamics.
    Villada-Balbuena M; Carbajal-Tinoco MD
    J Chem Phys; 2017 Jan; 146(4):045101. PubMed ID: 28147510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Base-pair ambiguity and the kinetics of RNA folding.
    Zhou G; Loper J; Geman S
    BMC Bioinformatics; 2019 Dec; 20(1):666. PubMed ID: 31830902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the Quality of Cotranscriptional Folding Simulations.
    Kühnl F; Stadler PF; Findeiß S
    Methods Mol Biol; 2024; 2726():347-376. PubMed ID: 38780738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple molecular model for thermophilic adaptation of functional nucleic acids.
    Blose JM; Silverman SK; Bevilacqua PC
    Biochemistry; 2007 Apr; 46(14):4232-40. PubMed ID: 17361991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments.
    Seemann SE; Gorodkin J; Backofen R
    Nucleic Acids Res; 2008 Nov; 36(20):6355-62. PubMed ID: 18836192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
    Chakraborty D; Collepardo-Guevara R; Wales DJ
    J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of a model for RNA folding.
    dell'Erba MG; Zemba GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011913. PubMed ID: 19257075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The essential role of stacking adenines in a two-base-pair RNA kissing complex.
    Stephenson W; Asare-Okai PN; Chen AA; Keller S; Santiago R; Tenenbaum SA; Garcia AE; Fabris D; Li PT
    J Am Chem Soc; 2013 Apr; 135(15):5602-11. PubMed ID: 23517345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway.
    Bisaria N; Greenfeld M; Limouse C; Pavlichin DS; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4956-65. PubMed ID: 27493222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free-energy landscape of a hyperstable RNA tetraloop.
    Miner JC; Chen AA; García AE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6665-70. PubMed ID: 27233937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the normalization of the minimum free energy of RNAs by sequence length.
    Trotta E
    PLoS One; 2014; 9(11):e113380. PubMed ID: 25405875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab initio determination of coarse-grained interactions in double-stranded DNA.
    Hsu CW; Fyta M; Lakatos G; Melchionna S; Kaxiras E
    J Chem Phys; 2012 Sep; 137(10):105102. PubMed ID: 22979896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting RNA structure: advances and limitations.
    Hofacker IL; Lorenz R
    Methods Mol Biol; 2014; 1086():1-19. PubMed ID: 24136595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics from Replica Exchange Molecular Dynamics Simulations.
    Stelzl LS; Hummer G
    J Chem Theory Comput; 2017 Aug; 13(8):3927-3935. PubMed ID: 28657736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nucleotide-level coarse-grained model of RNA.
    Šulc P; Romano F; Ouldridge TE; Doye JP; Louis AA
    J Chem Phys; 2014 Jun; 140(23):235102. PubMed ID: 24952569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of Three-Dimensional RNA Structures Using SimRNA.
    Wirecki TK; Nithin C; Mukherjee S; Bujnicki JM; Boniecki MJ
    Methods Mol Biol; 2020; 2165():103-125. PubMed ID: 32621221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.