These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26575916)

  • 1. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters.
    Gaus M; Jin H; Demapan D; Christensen AS; Goyal P; Elstner M; Cui Q
    J Chem Theory Comput; 2015 Sep; 11(9):4205-19. PubMed ID: 26575916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications.
    Gaus M; Lu X; Elstner M; Cui Q
    J Chem Theory Comput; 2014 Apr; 10(4):1518-1537. PubMed ID: 24803865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the applicability of density functional tight binding to transition metal ions. Parameterization for nickel with the spin-polarized DFTB3 model.
    Vujović M; Huynh M; Steiner S; Garcia-Fernandez P; Elstner M; Cui Q; Gruden M
    J Comput Chem; 2019 Jan; 40(2):400-413. PubMed ID: 30299559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications.
    Lu X; Gaus M; Elstner M; Cui Q
    J Phys Chem B; 2015 Jan; 119(3):1062-82. PubMed ID: 25178644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals.
    Lu X; Duchimaza-Heredia J; Cui Q
    J Phys Chem A; 2019 Aug; 123(34):7439-7453. PubMed ID: 31373822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems.
    Kubillus M; Kubař T; Gaus M; Řezáč J; Elstner M
    J Chem Theory Comput; 2015 Jan; 11(1):332-42. PubMed ID: 26889515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.
    Jin H; Goyal P; Das AK; Gaus M; Meuwly M; Cui Q
    J Phys Chem B; 2016 Mar; 120(8):1894-910. PubMed ID: 26624804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametrization and Benchmark of DFTB3 for Organic Molecules.
    Gaus M; Goez A; Elstner M
    J Chem Theory Comput; 2013 Jan; 9(1):338-54. PubMed ID: 26589037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization.
    Christensen AS; Elstner M; Cui Q
    J Chem Phys; 2015 Aug; 143(8):084123. PubMed ID: 26328834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules.
    Vuong VQ; Akkarapattiakal Kuriappan J; Kubillus M; Kranz JJ; Mast T; Niehaus TA; Irle S; Elstner M
    J Chem Theory Comput; 2018 Jan; 14(1):115-125. PubMed ID: 29232515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of d-d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+
    Stepanovic S; Lai R; Elstner M; Gruden M; Garcia-Fernandez P; Cui Q
    Phys Chem Chem Phys; 2020 Dec; 22(46):27084-27095. PubMed ID: 33220674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulation of water and hydration effects in different environments: challenges and developments for DFTB based models.
    Goyal P; Qian HJ; Irle S; Lu X; Roston D; Mori T; Elstner M; Cui Q
    J Phys Chem B; 2014 Sep; 118(38):11007-27. PubMed ID: 25166899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?
    Xu X; Zhang W; Tang M; Truhlar DG
    J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical and optical benchmarking of copper guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory.
    Jesser A; Rohrmüller M; Schmidt WG; Herres-Pawlis S
    J Comput Chem; 2014 Jan; 35(1):1-17. PubMed ID: 24122864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio benchmark calculations on Ca(II) complexes and assessment of density functional theory methodologies.
    Suárez D; Rayón VM; Díaz N; Valdés H
    J Phys Chem A; 2011 Oct; 115(41):11331-43. PubMed ID: 21954849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the electronic spectra of small molecules that incorporate analogues of the copper-cysteine bond.
    Do H; Besley NA
    J Phys Chem A; 2012 Aug; 116(33):8507-14. PubMed ID: 22830636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state.
    Ducéré JM; Goursot A; Berthomieu D
    J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.