These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26575933)

  • 1. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.
    Kuznetsov AS; Polyansky AA; Fleck M; Volynsky PE; Efremov RG
    J Chem Theory Comput; 2015 Sep; 11(9):4415-26. PubMed ID: 26575933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A.
    Hénin J; Pohorille A; Chipot C
    J Am Chem Soc; 2005 Jun; 127(23):8478-84. PubMed ID: 15941282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N; Monticelli L; Barnoud J; Tieleman DP
    Chem Phys Lipids; 2013 Apr; 169():95-105. PubMed ID: 23415670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes.
    Sengupta D; Marrink SJ
    Phys Chem Chem Phys; 2010 Oct; 12(40):12987-96. PubMed ID: 20733990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Modeling of peptides and proteins in a membrane environment.II. Structural and energetic aspects of Glycophorin A in a lipid bilayer].
    Volynskiĭ PE; Nol'de DE; Arsen'ev AS; Efremov RG
    Bioorg Khim; 2000 Mar; 26(3):163-72. PubMed ID: 10816813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach.
    Wassenaar TA; Pluhackova K; Moussatova A; Sengupta D; Marrink SJ; Tieleman DP; Böckmann RA
    J Chem Theory Comput; 2015 May; 11(5):2278-91. PubMed ID: 26574426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif.
    Orzáez M; Lukovic D; Abad C; Pérez-Payá E; Mingarro I
    FEBS Lett; 2005 Mar; 579(7):1633-8. PubMed ID: 15757653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains.
    Beevers AJ; Kukol A
    J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of transmembrane helices: what determines assembling of a dimer?
    Efremov RG; Vereshaga YA; Volynsky PE; Nolde DE; Arseniev AS
    J Comput Aided Mol Des; 2006 Jan; 20(1):27-45. PubMed ID: 16775778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices.
    Sapay N; Bennett WF; Tieleman DP
    Biochemistry; 2010 Sep; 49(35):7665-73. PubMed ID: 20666375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proline residues in transmembrane helix packing.
    Orzáez M; Salgado J; Giménez-Giner A; Pérez-Payá E; Mingarro I
    J Mol Biol; 2004 Jan; 335(2):631-40. PubMed ID: 14672669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants.
    Prasanna X; Praveen PJ; Sengupta D
    Phys Chem Chem Phys; 2013 Nov; 15(43):19031-41. PubMed ID: 24096861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane helix packing of ErbB/Neu receptor in membrane environment: a molecular dynamics study.
    Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2006 Dec; 24(3):209-28. PubMed ID: 17054379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating the free energy of association of transmembrane helices.
    Zhang J; Lazaridis T
    Biophys J; 2006 Sep; 91(5):1710-23. PubMed ID: 16766613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.