BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26575935)

  • 21. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.
    Zhang H; Jiang Y; Yan H; Cui Z; Yin C
    J Chem Inf Model; 2017 Nov; 57(11):2763-2775. PubMed ID: 29039666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surveying implicit solvent models for estimating small molecule absolute hydration free energies.
    Knight JL; Brooks CL
    J Comput Chem; 2011 Oct; 32(13):2909-23. PubMed ID: 21735452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.
    Godschalk F; Genheden S; Söderhjelm P; Ryde U
    Phys Chem Chem Phys; 2013 May; 15(20):7731-9. PubMed ID: 23595060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examining the assumptions underlying continuum-solvent models.
    Harris RC; Pettitt BM
    J Chem Theory Comput; 2015 Oct; 11(10):4593-600. PubMed ID: 26574250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absolute hydration free energies of blocked amino acids: implications for protein solvation and stability.
    König G; Bruckner S; Boresch S
    Biophys J; 2013 Jan; 104(2):453-62. PubMed ID: 23442867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method.
    Lee MS; Olson MA
    J Phys Chem B; 2005 Mar; 109(11):5223-36. PubMed ID: 16863188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning Potential Functions to Host-Guest Binding Data.
    Setiadi J; Boothroyd S; Slochower DR; Dotson DL; Thompson MW; Wagner JR; Wang LP; Gilson MK
    J Chem Theory Comput; 2024 Jan; 20(1):239-252. PubMed ID: 38147689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
    Jiao D; Zhang J; Duke RE; Li G; Schnieders MJ; Ren P
    J Comput Chem; 2009 Aug; 30(11):1701-11. PubMed ID: 19399779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the solvent representation on vibrational entropy calculations: generalized born versus distance-dependent dielectric model.
    Kopitz H; Cashman DA; Pfeiffer-Marek S; Gohlke H
    J Comput Chem; 2012 Apr; 33(9):1004-13. PubMed ID: 22298332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach.
    Liu HY; Zou X
    J Phys Chem B; 2006 May; 110(18):9304-13. PubMed ID: 16671749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T).
    Caldararu O; Olsson MA; Riplinger C; Neese F; Ryde U
    J Comput Aided Mol Des; 2017 Jan; 31(1):87-106. PubMed ID: 27600554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM; Jamali S; Bardhan JP; Lustig SR
    J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
    Fu J; Liu Y; Wu J
    J Comput Aided Mol Des; 2014 Mar; 28(3):299-304. PubMed ID: 24622881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics.
    Wang J; Tan C; Chanco E; Luo R
    Phys Chem Chem Phys; 2010 Feb; 12(5):1194-202. PubMed ID: 20094685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized Born implicit solvent models for small molecule hydration free energies.
    Brieg M; Setzler J; Albert S; Wenzel W
    Phys Chem Chem Phys; 2017 Jan; 19(2):1677-1685. PubMed ID: 27995260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing the influence of explicit and implicit solvation models on site-specific thermodynamic stability of proteins.
    Cho MK; Chong SH; Ham S; Shin S
    J Comput Chem; 2023 Sep; 44(25):1976-1985. PubMed ID: 37352129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.