These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26576782)

  • 21. Site specificity of bone architecture between the distal radius and distal tibia in children and adolescents: An HR-pQCT study.
    Liu D; Burrows M; Egeli D; McKay H
    Calcif Tissue Int; 2010 Oct; 87(4):314-23. PubMed ID: 20725826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision.
    Sievänen H; Koskue V; Rauhio A; Kannus P; Heinonen A; Vuori I
    J Bone Miner Res; 1998 May; 13(5):871-82. PubMed ID: 9610752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples.
    Foiret J; Minonzio JG; Chappard C; Talmant M; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1478-88. PubMed ID: 25167148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of a Cast on Short-Term Reproducibility and Bone Parameters Obtained from HR-pQCT Measurements at the Distal End of the Radius.
    de Jong JJ; Arts JJ; Meyer U; Willems PC; Geusens PP; van den Bergh JP; van Rietbergen B
    J Bone Joint Surg Am; 2016 Mar; 98(5):356-62. PubMed ID: 26935457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between distal radial cortical thickness and bone mineral density.
    Webber T; Patel SP; Pensak M; Fajolu O; Rozental TD; Wolf JM
    J Hand Surg Am; 2015 Mar; 40(3):493-9. PubMed ID: 25708436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.
    Tu SJ; Huang HW; Chang WJ
    Micron; 2015 Apr; 71():14-21. PubMed ID: 25614341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic assessment of cortical bone thickness in vitro and in vivo.
    Karjalainen J; Riekkinen O; Töyräs J; Kröger H; Jurvelin J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2191-7. PubMed ID: 18986867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic propagation in cancellous bone: a new stratified model.
    Hughes ER; Leighton TG; Petley GW; White PR
    Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography.
    Ward KA; Adams JE; Hangartner TN
    Calcif Tissue Int; 2005 Nov; 77(5):275-80. PubMed ID: 16307388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.
    Croker SL; Reed W; Donlon D
    Forensic Sci Int; 2016 Mar; 260():104.e1-104.e17. PubMed ID: 26786143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propagation of two longitudinal waves in human cancellous bone: an in vitro study.
    Mizuno K; Matsukawa M; Otani T; Laugier P; Padilla F
    J Acoust Soc Am; 2009 May; 125(5):3460-6. PubMed ID: 19425685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical and trabecular bone density and structure in anorexia nervosa.
    Milos G; Spindler A; Rüegsegger P; Seifert B; Mühlebach S; Uebelhart D; Häuselmann HJ
    Osteoporos Int; 2005 Jul; 16(7):783-90. PubMed ID: 15452690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study.
    Mizuno K; Somiya H; Kubo T; Matsukawa M; Otani T; Tsujimoto T
    J Acoust Soc Am; 2010 Nov; 128(5):3181-9. PubMed ID: 21110613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short ultrasonic waves in cancellous bone.
    Kaczmarek M; Kubik J; Pakula M
    Ultrasonics; 2002 May; 40(1-8):95-100. PubMed ID: 12160076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.