BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 26576818)

  • 1. Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications.
    Lu H; Zheng Y; Zhao X; Wang L; Ma S; Han X; Xu B; Tian W; Gao H
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):155-9. PubMed ID: 26576818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-Red and Near-IR AIE-Active Fluorescent Organic Nanoprobes with Enhanced Tumor-Targeting Efficacy: Shape-Specific Effects.
    Shao A; Xie Y; Zhu S; Guo Z; Zhu S; Guo J; Shi P; James TD; Tian H; Zhu WH
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7275-80. PubMed ID: 25950152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging.
    Wang L; Xia Q; Zhang Z; Qu J; Liu R
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():399-406. PubMed ID: 30274072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels.
    Li Y; Cai Z; Liu S; Zhang H; Wong STH; Lam JWY; Kwok RTK; Qian J; Tang BZ
    Nat Commun; 2020 Mar; 11(1):1255. PubMed ID: 32152288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential.
    Zheng Z; Zhang T; Liu H; Chen Y; Kwok RTK; Ma C; Zhang P; Sung HHY; Williams ID; Lam JWY; Wong KS; Tang BZ
    ACS Nano; 2018 Aug; 12(8):8145-8159. PubMed ID: 30074773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging.
    Zhang J; Chen R; Zhu Z; Adachi C; Zhang X; Lee CS
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26266-74. PubMed ID: 26558487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.
    Klymchenko AS
    Acc Chem Res; 2017 Feb; 50(2):366-375. PubMed ID: 28067047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics.
    He S; Song J; Qu J; Cheng Z
    Chem Soc Rev; 2018 Jun; 47(12):4258-4278. PubMed ID: 29725670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells.
    Chen W; Zhang C; Han X; Liu SH; Tan Y; Yin J
    J Org Chem; 2019 Nov; 84(22):14498-14507. PubMed ID: 31524391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging.
    Chen H; Lin W; Cui H; Jiang W
    Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications.
    Guo Z; Park S; Yoon J; Shin I
    Chem Soc Rev; 2014 Jan; 43(1):16-29. PubMed ID: 24052190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of a highly photostable and chemically stable zwitterionic near-infrared dye for imaging applications.
    Su D; Teoh CL; Samanta A; Kang NY; Park SJ; Chang YT
    Chem Commun (Camb); 2015 Mar; 51(19):3989-92. PubMed ID: 25664357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIR dyes for bioimaging applications.
    Escobedo JO; Rusin O; Lim S; Strongin RM
    Curr Opin Chem Biol; 2010 Feb; 14(1):64-70. PubMed ID: 19926332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Aggregation-Induced Red-Emissive Organic Thermally Activated Delayed Fluorescence Materials with Prolonged Fluorescence Lifetime for Time-Resolved Luminescence Bioimaging.
    Qi S; Kim S; Nguyen VN; Kim Y; Niu G; Kim G; Kim SJ; Park S; Yoon J
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51293-51301. PubMed ID: 33156606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescein-Inspired Near-Infrared Chemodosimeter for Luminescence Bioimaging.
    Wang HY; Zhang H; Chen S; Liu Y
    Curr Med Chem; 2019; 26(21):4029-4041. PubMed ID: 29065823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection.
    Lei Z; Zhang F
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16294-16308. PubMed ID: 32780466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells.
    Zhao C; Li X; Wang F
    Chem Asian J; 2014 Jul; 9(7):1777-81. PubMed ID: 24807291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescent 9-phenylethynylpyronin analogues for bioimaging.
    Pastierik T; Sebej P; Medalová J; Stacko P; Klán P
    J Org Chem; 2014 Apr; 79(8):3374-82. PubMed ID: 24684518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.