These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 26576845)

  • 1. Proposal of a Twin Arginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes. [Corrected].
    Kamikawa R; Tanifuji G; Ishikawa SA; Ishii K; Matsuno Y; Onodera NT; Ishida K; Hashimoto T; Miyashita H; Mayama S; Inagaki Y
    Mol Biol Evol; 2015 Oct; 32(10):2598-604. PubMed ID: 26048548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae.
    Nedelcu AM
    J Mol Evol; 2001 Dec; 53(6):670-9. PubMed ID: 11677627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina.
    Slamovits CH; Keeling PJ
    Mol Biol Evol; 2008 Jul; 25(7):1297-306. PubMed ID: 18385218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation.
    Barrett CF; Davis JI
    Am J Bot; 2012 Sep; 99(9):1513-23. PubMed ID: 22935364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms.
    Barrett CF; Freudenstein JV; Li J; Mayfield-Jones DR; Perez L; Pires JC; Santos C
    Mol Biol Evol; 2014 Dec; 31(12):3095-112. PubMed ID: 25172958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.
    dePamphilis CW; Palmer JD
    Nature; 1990 Nov; 348(6299):337-9. PubMed ID: 2250706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.
    Matsuzaki M; Kuroiwa H; Kuroiwa T; Kita K; Nozaki H
    Mol Biol Evol; 2008 Jun; 25(6):1167-79. PubMed ID: 18359776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.
    Detke S; Elsabrouty R
    Acta Trop; 2008 Jan; 105(1):16-20. PubMed ID: 17920025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii.
    Knauf U; Hachtel W
    Mol Genet Genomics; 2002 Jun; 267(4):492-7. PubMed ID: 12111556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis.
    Wickett NJ; Zhang Y; Hansen SK; Roper JM; Kuehl JV; Plock SA; Wolf PG; DePamphilis CW; Boore JL; Goffinet B
    Mol Biol Evol; 2008 Feb; 25(2):393-401. PubMed ID: 18056074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.
    Harper JT; Keeling PJ
    Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae.
    Wicke S; Schäferhoff B; dePamphilis CW; Müller KF
    Mol Biol Evol; 2014 Mar; 31(3):529-45. PubMed ID: 24344209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat.
    Sanderson MJ; Copetti D; Búrquez A; Bustamante E; Charboneau JL; Eguiarte LE; Kumar S; Lee HO; Lee J; McMahon M; Steele K; Wing R; Yang TJ; Zwickl D; Wojciechowski MF
    Am J Bot; 2015 Jul; 102(7):1115-27. PubMed ID: 26199368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1).
    Sanchez-Puerta MV; Delwiche CF
    J Phycol; 2008 Oct; 44(5):1097-107. PubMed ID: 27041706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia.
    Janouskovec J; Sobotka R; Lai DH; Flegontov P; Koník P; Komenda J; Ali S; Prásil O; Pain A; Oborník M; Lukes J; Keeling PJ
    Mol Biol Evol; 2013 Nov; 30(11):2447-62. PubMed ID: 23974208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past?
    Bodył A; Mackiewicz P; Milanowski R
    J Parasitol; 2010 Apr; 96(2):465-75. PubMed ID: 20540605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposal of a Twin Aarginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes.
    Kamikawa R; Tanifuji G; Ishikawa SA; Ishii K; Matsuno Y; Onodera NT; Ishida K; Hashimoto T; Miyashita H; Mayama S; Inagaki Y
    Mol Biol Evol; 2016 Jan; 33(1):303. PubMed ID: 26576845
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.