BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26576973)

  • 1. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.
    López-Haro SA; Gutiérrez MI; Vera A; Leija L
    J Med Ultrason (2001); 2015 Oct; 42(4):489-98. PubMed ID: 26576973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of the thermo-acoustic lens effect during focused ultrasound surgery.
    Hallaj IM; Cleveland RO; Hynynen K
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2245-53. PubMed ID: 11386575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound speed and attenuation of human pancreas and pancreatic tumors and their influence on focused ultrasound thermal and mechanical therapies.
    Gray MD; Spiers L; Coussios CC
    Med Phys; 2024 Feb; 51(2):809-825. PubMed ID: 37477551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies.
    Pattyn A; Kratkiewicz K; Alijabbari N; Carson PL; Littrup P; Fowlkes JB; Duric N; Mehrmohammadi M
    Med Phys; 2022 Sep; 49(9):6120-6136. PubMed ID: 35759729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatable domain and optimal frequency for brain tumors during ultrasound hyperthermia.
    Lin WL; Liauh CT; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):239-47. PubMed ID: 10656398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense speed-of-sound shift imaging for ultrasonic thermometry.
    Grutman T; Ilovitsh T
    Phys Med Biol; 2023 Oct; 68(21):. PubMed ID: 37774710
    [No Abstract]   [Full Text] [Related]  

  • 8. [Acoustic method of determining the temperature of biological tissues during local heating].
    Dmitriev VN; Solontsova LV; Gavrilov LR
    Med Radiol (Mosk); 1987 Jan; 32(1):82-6. PubMed ID: 3807715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer.
    Namakshenas P; Mojra A
    Comput Methods Programs Biomed; 2020 Dec; 197():105698. PubMed ID: 32798975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling.
    Adams MS; Scott SJ; Salgaonkar VA; Sommer G; Diederich CJ
    Int J Hyperthermia; 2016; 32(2):97-111. PubMed ID: 27097663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control.
    Prakash P; Diederich CJ
    Int J Hyperthermia; 2012; 28(1):69-86. PubMed ID: 22235787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound.
    Gutierrez MI; Lopez-Haro SA; Vera A; Leija L
    Biomed Res Int; 2016; 2016():5484735. PubMed ID: 27999801
    [No Abstract]   [Full Text] [Related]  

  • 15. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application.
    Dabbagh A; Abdullah BJ; Abu Kasim NH; Ramasindarum C
    Int J Hyperthermia; 2014 Feb; 30(1):66-74. PubMed ID: 24286257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of a model for predicting transient temperature distributions by focused ultrasound.
    Chin RB; Zagzebski JA; Madsen EL
    Phys Med Biol; 1991 Sep; 36(9):1153-64. PubMed ID: 1946600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy.
    Tyréus PD; Diederich CJ
    Phys Med Biol; 2002 Apr; 47(7):1073-89. PubMed ID: 11996056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.