BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26577069)

  • 1. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.
    Grohé C; Tseng ZJ; Lebrun R; Boistel R; Flynn JJ
    J Anat; 2016 Mar; 228(3):366-83. PubMed ID: 26577069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals.
    Ekdale EG
    PLoS One; 2013; 8(6):e66624. PubMed ID: 23805251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach.
    Gunz P; Ramsier M; Kuhrig M; Hublin JJ; Spoor F
    J Anat; 2012 Jun; 220(6):529-43. PubMed ID: 22404255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.
    Fabre AC; Cornette R; Goswami A; Peigné S
    J Anat; 2015 Jun; 226(6):596-610. PubMed ID: 25994128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia).
    Pfaff C; Martin T; Ruf I
    Proc Biol Sci; 2015 Jun; 282(1809):20150744. PubMed ID: 26019162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form and function of the mammalian inner ear.
    Ekdale EG
    J Anat; 2016 Feb; 228(2):324-37. PubMed ID: 25911945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters.
    Macrini TE; Flynn JJ; Croft DA; Wyss AR
    J Anat; 2010 May; 216(5):600-10. PubMed ID: 20525088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences.
    Costeur L; Grohé C; Aguirre-Fernández G; Ekdale E; Schulz G; Müller B; Mennecart B
    Sci Rep; 2018 May; 8(1):7841. PubMed ID: 29777194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water.
    Schwab JA; Young MT; Neenan JM; Walsh SA; Witmer LM; Herrera Y; Allain R; Brochu CA; Choiniere JN; Clark JM; Dollman KN; Etches S; Fritsch G; Gignac PM; Ruebenstahl A; Sachs S; Turner AH; Vignaud P; Wilberg EW; Xu X; Zanno LE; Brusatte SL
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10422-10428. PubMed ID: 32312812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic variation in the crocodylian vestibular system.
    Schwab JA; Young MT; Walsh SA; Witmer LM; Herrera Y; Brochu CA; Butler IB; Brusatte SL
    J Anat; 2022 May; 240(5):821-832. PubMed ID: 34841534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semicircular canals and agility: the influence of size and shape measures.
    Cox PG; Jeffery N
    J Anat; 2010 Jan; 216(1):37-47. PubMed ID: 20002227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroanatomy and inner ear labyrinths of the narwhal, Monodon monoceros, and beluga, Delphinapterus leucas (Cetacea: Monodontidae).
    Racicot RA; Darroch SAF; Kohno N
    J Anat; 2018 Oct; 233(4):421-439. PubMed ID: 30033539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Petrosal and bony labyrinth morphology of the stem paenungulate mammal (Paenungulatomorpha) Ocepeia daouiensis from the Paleocene of Morocco.
    Gheerbrant E; Schmitt A; Billet G
    J Anat; 2022 Apr; 240(4):595-611. PubMed ID: 32735727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals.
    Ruf I; Luo ZX; Wible JR; Martin T
    J Anat; 2009 May; 214(5):679-93. PubMed ID: 19438763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner ear morphology in wild versus laboratory house mice.
    Renaud S; Amar L; Chevret P; Romestaing C; Quéré JP; Régis C; Lebrun R
    J Anat; 2024 May; 244(5):722-738. PubMed ID: 38214368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurosensory anatomy of Varanopidae and its implications for early synapsid evolution.
    Bazzana KD; Evans DC; Bevitt JJ; Reisz RR
    J Anat; 2022 May; 240(5):833-849. PubMed ID: 34775594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology.
    Bradshaw AP; Curthoys IS; Todd MJ; Magnussen JS; Taubman DS; Aw ST; Halmagyi GM
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):145-59. PubMed ID: 19949828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological variation, modularity and integration in the scapula and humerus of Lissotriton newts.
    Urošević A; Budečević S; Ljubisavljević K; Tomašević Kolarov N; Ajduković M
    J Anat; 2024 Jul; 245(1):97-108. PubMed ID: 38429993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative morphology of the avian bony columella.
    Peacock J; Spellman GM; Field DJ; Mason MJ; Mayr G
    Anat Rec (Hoboken); 2024 May; 307(5):1735-1763. PubMed ID: 37365751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D revelation of phenotypic variation, evolutionary allometry, and ancestral states of corolla shape: a case study of clade Corytholoma (subtribe Ligeriinae, family Gesneriaceae).
    Hsu HC; Chou WC; Kuo YF
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31967295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.