These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26577181)

  • 1. Physicochemical properties of copper important for its antibacterial activity and development of a unified model.
    Hans M; Mathews S; Mücklich F; Solioz M
    Biointerphases; 2015 Mar; 11(1):018902. PubMed ID: 26577181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters.
    Luo J; Hein C; Mücklich F; Solioz M
    Biointerphases; 2017 Apr; 12(2):020301. PubMed ID: 28407716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of copper oxides in contact killing of bacteria.
    Hans M; Erbe A; Mathews S; Chen Y; Solioz M; Mücklich F
    Langmuir; 2013 Dec; 29(52):16160-6. PubMed ID: 24344971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces.
    Mathews S; Kumar R; Solioz M
    Appl Environ Microbiol; 2015 Sep; 81(18):6399-403. PubMed ID: 26150470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-L-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity.
    Ouyang Y; Cai X; Shi Q; Liu L; Wan D; Tan S; Ouyang Y
    Colloids Surf B Biointerfaces; 2013 Jul; 107():107-14. PubMed ID: 23475058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum.
    Wang X; Liu X; Han H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():136-42. PubMed ID: 23201730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild Synthesis of Copper Nanoparticles with Enhanced Oxidative Stability and Their Application in Antibacterial Films.
    Tang L; Zhu L; Tang F; Yao C; Wang J; Li L
    Langmuir; 2018 Dec; 34(48):14570-14576. PubMed ID: 30423251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of copper bactericidal properties in medical practice].
    Prado J V; Vidal A R; Durán T C
    Rev Med Chil; 2012 Oct; 140(10):1325-32. PubMed ID: 23559292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface structure influences contact killing of bacteria by copper.
    Zeiger M; Solioz M; Edongué H; Arzt E; Schneider AS
    Microbiologyopen; 2014 Jun; 3(3):327-32. PubMed ID: 24740976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys.
    Liu J; Li F; Liu C; Wang H; Ren B; Yang K; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():392-400. PubMed ID: 24411393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications.
    Mitra D; Kang ET; Neoh KG
    ACS Appl Mater Interfaces; 2020 May; 12(19):21159-21182. PubMed ID: 31880421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact killing and antimicrobial properties of copper.
    Vincent M; Duval RE; Hartemann P; Engels-Deutsch M
    J Appl Microbiol; 2018 May; 124(5):1032-1046. PubMed ID: 29280540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver-, calcium-, and copper molybdate compounds: Preparation, antibacterial activity, and mechanisms.
    Tanasic D; Rathner A; Kollender JP; Rathner P; Müller N; Zelenka KC; Hassel AW; Mardare CC
    Biointerphases; 2017 Nov; 12(5):05G607. PubMed ID: 29113436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes.
    Hang R; Gao A; Huang X; Wang X; Zhang X; Qin L; Tang B
    J Biomed Mater Res A; 2014 Jun; 102(6):1850-8. PubMed ID: 23907848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of bacteria on metallic copper surfaces in a hospital trial.
    Mikolay A; Huggett S; Tikana L; Grass G; Braun J; Nies DH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1875-9. PubMed ID: 20449737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties.
    Bayrak R; Akçay HT; Beriş FŞ; Sahin E; Bayrak H; Demirbaş Ü
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():272-80. PubMed ID: 24952089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions.
    Mathews S; Hans M; Mücklich F; Solioz M
    Appl Environ Microbiol; 2013 Apr; 79(8):2605-11. PubMed ID: 23396344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces.
    Rosenberg M; Vija H; Kahru A; Keevil CW; Ivask A
    Sci Rep; 2018 May; 8(1):8172. PubMed ID: 29802355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity.
    Hassan MS; Amna T; Yang OB; El-Newehy MH; Al-Deyab SS; Khil MS
    Colloids Surf B Biointerfaces; 2012 Sep; 97():201-6. PubMed ID: 22609604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.