BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26577253)

  • 1. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
    Bijar A; Rohan PY; Perrier P; Payan Y
    Ann Biomed Eng; 2016 Jan; 44(1):16-34. PubMed ID: 26577253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated subject-specific, hexahedral mesh generation via image registration.
    Ji S; Ford JC; Greenwald RM; Beckwith JG; Paulsen KD; Flashman LA; McAllister TW
    Finite Elem Anal Des; 2011 Oct; 47(10):1178-1185. PubMed ID: 21731153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.
    Xing F; Prince JL; Stone M; Wedeen VJ; Fakhri GE; Woo J
    Proc SPIE Int Soc Opt Eng; 2017; 10133():. PubMed ID: 29081569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment and application of subject-specific three-dimensional finite element mesh model for osteonecrosis of femoral head].
    Pang Z; Wei Q; Zhou G; Chen P; He W; Bai B; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):251-5. PubMed ID: 22616168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting primate tongue morphology based on geometrical skull matching. A first step towards an application on fossil hominins.
    Alvarez P; El Mouss M; Calka M; Belme A; Berillon G; Brige P; Payan Y; Perrier P; Vialet A
    PLoS Comput Biol; 2024 Jan; 20(1):e1011808. PubMed ID: 38252664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of nonrigid image registration using finite-element methods: application to breast MR images.
    Schnabel JA; Tanner C; Castellano-Smith AD; Degenhard A; Leach MO; Hose DR; Hill DL; Hawkes DJ
    IEEE Trans Med Imaging; 2003 Feb; 22(2):238-47. PubMed ID: 12716000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.
    Huang H; Xiang C; Zeng C; Ouyang H; Wong KK; Huang W
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):743-53. PubMed ID: 26577713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic generation of subject-specific finite element models of the spine from magnetic resonance images.
    Kok J; Shcherbakova YM; Schlösser TPC; Seevinck PR; van der Velden TA; Castelein RM; Ito K; van Rietbergen B
    Front Bioeng Biotechnol; 2023; 11():1244291. PubMed ID: 37731762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac mesh morphing method for finite element modeling of heart failure with preserved ejection fraction.
    Weissmann J; Charles CJ; Richards AM; Yap CH; Marom G
    J Mech Behav Biomed Mater; 2022 Feb; 126():104937. PubMed ID: 34979481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.