These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 26577273)

  • 1. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.
    Schmitt P; Rosa RD; Destoumieux-Garzón D
    Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G; Maisetta G; Esin S
    Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling bacterial infections by inhibiting proton-dependent processes.
    Kaneti G; Meir O; Mor A
    Biochim Biophys Acta; 2016 May; 1858(5):995-1003. PubMed ID: 26522076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic antibiofilm peptides.
    de la Fuente-Núñez C; Cardoso MH; de Souza Cândido E; Franco OL; Hancock RE
    Biochim Biophys Acta; 2016 May; 1858(5):1061-9. PubMed ID: 26724202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides.
    Walkenhorst WF
    Biochim Biophys Acta; 2016 May; 1858(5):926-35. PubMed ID: 26751595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-form KLKLLLLLKLK-NH
    Manabe T; Kawasaki K
    Sci Rep; 2017 Mar; 7():43384. PubMed ID: 28262682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.
    Torcato IM; Huang YH; Franquelim HG; Gaspar D; Craik DJ; Castanho MA; Troeira Henriques S
    Biochim Biophys Acta; 2013 Mar; 1828(3):944-55. PubMed ID: 23246973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and antimicrobial activity of dermaseptin S1 analogues.
    Savoia D; Guerrini R; Marzola E; Salvadori S
    Bioorg Med Chem; 2008 Sep; 16(17):8205-9. PubMed ID: 18676150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity.
    Zhong C; Liu T; Gou S; He Y; Zhu N; Zhu Y; Wang L; Liu H; Zhang Y; Yao J; Ni J
    Eur J Med Chem; 2019 Nov; 182():111636. PubMed ID: 31466017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between antimicrobial peptides and mycobacteria.
    Gutsmann T
    Biochim Biophys Acta; 2016 May; 1858(5):1034-43. PubMed ID: 26851776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.
    Lohner K
    Curr Top Med Chem; 2017; 17(5):508-519. PubMed ID: 28117020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity.
    Wiradharma N; Sng MY; Khan M; Ong ZY; Yang YY
    Macromol Rapid Commun; 2013 Jan; 34(1):74-80. PubMed ID: 23112127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.