These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 2657733)
1. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane. Roepe PD; Zbar RI; Sarkar HK; Kaback HR Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3992-6. PubMed ID: 2657733 [TBL] [Abstract][Full Text] [Related]
2. Sequential truncation of the lactose permease over a three-amino acid sequence near the carboxyl terminus leads to progressive loss of activity and stability. McKenna E; Hardy D; Pastore JC; Kaback HR Proc Natl Acad Sci U S A; 1991 Apr; 88(8):2969-73. PubMed ID: 2014218 [TBL] [Abstract][Full Text] [Related]
3. Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. McKenna E; Hardy D; Kaback HR J Biol Chem; 1992 Apr; 267(10):6471-4. PubMed ID: 1551862 [TBL] [Abstract][Full Text] [Related]
4. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Persson B; Schwieger J; Cohan P; Kaback HR Protein Sci; 1994 Feb; 3(2):240-7. PubMed ID: 8003960 [TBL] [Abstract][Full Text] [Related]
5. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Sahin-Tóth M; Kaback HR Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887 [TBL] [Abstract][Full Text] [Related]
6. Role of proline residues in the structure and function of a membrane transport protein. Consler TG; Tsolas O; Kaback HR Biochemistry; 1991 Feb; 30(5):1291-8. PubMed ID: 1991110 [TBL] [Abstract][Full Text] [Related]
7. The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity. Bibi E; Stearns SM; Kaback HR Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3180-4. PubMed ID: 1565610 [TBL] [Abstract][Full Text] [Related]
8. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues. Püttner IB; Sarkar HK; Padan E; Lolkema JS; Kaback HR Biochemistry; 1989 Mar; 28(6):2525-33. PubMed ID: 2659072 [TBL] [Abstract][Full Text] [Related]
9. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Zen KH; McKenna E; Bibi E; Hardy D; Kaback HR Biochemistry; 1994 Jul; 33(27):8198-206. PubMed ID: 8031753 [TBL] [Abstract][Full Text] [Related]
10. Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli. McKenna E; Hardy D; Kaback HR Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11954-8. PubMed ID: 1465425 [TBL] [Abstract][Full Text] [Related]
11. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off. Frillingos S; Gonzalez A; Kaback HR Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367 [TBL] [Abstract][Full Text] [Related]
12. Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. Bibi E; Verner G; Chang CY; Kaback HR Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7271-5. PubMed ID: 1871132 [TBL] [Abstract][Full Text] [Related]
13. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Dunten RL; Gonzalez A; Kaback HR Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10547-51. PubMed ID: 1438245 [TBL] [Abstract][Full Text] [Related]
14. Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Kaback HR Biochemistry; 1993 Sep; 32(38):10027-35. PubMed ID: 8399130 [TBL] [Abstract][Full Text] [Related]
15. Association between the amino- and carboxyl-terminal halves of lactose permease is specific and mediated by multiple transmembrane domains. Sahin-Tóth M; Kaback HR; Friedlander M Biochemistry; 1996 Feb; 35(6):2016-21. PubMed ID: 8639686 [TBL] [Abstract][Full Text] [Related]
16. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325-->Asp. Weinglass AB; Smirnova IN; Kaback HR Biochemistry; 2001 Jan; 40(3):769-76. PubMed ID: 11170394 [TBL] [Abstract][Full Text] [Related]
17. Purification and functional characterization of the C-terminal half of the lactose permease of Escherichia coli. Wu J; Sun J; Kaback HR Biochemistry; 1996 Apr; 35(16):5213-9. PubMed ID: 8611506 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation. Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006 [TBL] [Abstract][Full Text] [Related]
19. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli. Frillingos S; Sahin-Tóth M; Persson B; Kaback HR Biochemistry; 1994 Jul; 33(26):8074-81. PubMed ID: 8025113 [TBL] [Abstract][Full Text] [Related]
20. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli. Frillingos S; Sun J; Gonzalez A; Kaback HR Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]