These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26577345)

  • 1. Analyzing EEG signals to detect unexpected obstacles during walking.
    Salazar-Varas R; Costa Á; Iáñez E; Úbeda A; Hortal E; Azorín JM
    J Neuroeng Rehabil; 2015 Nov; 12():101. PubMed ID: 26577345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking.
    Elvira M; Iáñez E; Quiles V; Ortiz M; Azorín JM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-machine interface based on transfer-learning for detecting the appearance of obstacles during exoskeleton-assisted walking.
    Quiles V; Ferrero L; Iáñez E; Ortiz M; Gil-Agudo Á; Azorín JM
    Front Neurosci; 2023; 17():1154480. PubMed ID: 36998726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O
    J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of different reaching movements from the same limb using EEG.
    Shiman F; López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Spüler M; Birbaumer N; Ramos-Murguialday A
    J Neural Eng; 2017 Aug; 14(4):046018. PubMed ID: 28467325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
    Liao SC; Wu CT; Huang HC; Cheng WT; Liu YH
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent.
    Rodríguez-Ugarte M; Iáñez E; Ortíz M; Azorín JM
    Front Neuroinform; 2017; 11():45. PubMed ID: 28744212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.
    Faradji F; Ward RK; Birch GE
    J Neurosci Methods; 2009 Jun; 180(2):330-9. PubMed ID: 19439361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications.
    Xu R; Jiang N; Lin C; Mrachacz-Kersting N; Dremstrup K; Farina D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):288-96. PubMed ID: 24448593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification.
    Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Detection of Starting and Stopping During Gait Cycle.
    Hortal E; Úbeda A; Iáñez E; Azorín JM; Fernández E
    Int J Neural Syst; 2016 Nov; 26(7):1650029. PubMed ID: 27354191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding of Turning Intention during Walking Based on EEG Biomarkers.
    Quiles V; Ferrero L; Iáñez E; Ortiz M; Azorín JM
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Control.
    Mishchenko Y; Kaya M; Ozbay E; Yanar H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):977-987. PubMed ID: 30130168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.