These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 26577366)
1. Convection-Enhanced Transport into Open Cavities : Effect of Cavity Aspect Ratio. Horner M; Metcalfe G; Ottino JM Cardiovasc Eng Technol; 2015 Sep; 6(3):352-63. PubMed ID: 26577366 [TBL] [Abstract][Full Text] [Related]
2. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Duraiswamy N; Cesar JM; Schoephoerster RT; Moore JE Biorheology; 2008; 45(5):547-61. PubMed ID: 19065004 [TBL] [Abstract][Full Text] [Related]
3. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Dukhin SS; Labib ME Adv Colloid Interface Sci; 2013 Nov; 199-200():23-43. PubMed ID: 23859221 [TBL] [Abstract][Full Text] [Related]
4. Front propagation in a chaotic flow field. Mehrvarzi CO; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012905. PubMed ID: 25122358 [TBL] [Abstract][Full Text] [Related]
5. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery. Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562 [TBL] [Abstract][Full Text] [Related]
6. Mini-review: convection around biofilms. Stewart PS Biofouling; 2012; 28(2):187-98. PubMed ID: 22352315 [TBL] [Abstract][Full Text] [Related]
7. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport. Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816 [TBL] [Abstract][Full Text] [Related]
8. A new way to reduce flow disturbance in endovascular stents: a numerical study. Chen Z; Fan Y; Deng X; Xu Z Artif Organs; 2011 Apr; 35(4):392-7. PubMed ID: 21314832 [TBL] [Abstract][Full Text] [Related]
9. Pulsatile flow effects on the hemodynamics of intracranial aneurysms. Le TB; Borazjani I; Sotiropoulos F J Biomech Eng; 2010 Nov; 132(11):111009. PubMed ID: 21034150 [TBL] [Abstract][Full Text] [Related]
10. Pressure and kinetic energy transport across the cavity mouth in resonating cavities. Bailey PR; Abbá A; Tordella D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013013. PubMed ID: 23410432 [TBL] [Abstract][Full Text] [Related]
11. [Phylogeny of gas exchange systems]. Jürgens KD; Gros G Anasthesiol Intensivmed Notfallmed Schmerzther; 2002 Apr; 37(4):185-98. PubMed ID: 11967744 [TBL] [Abstract][Full Text] [Related]
12. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
13. The adverse effects of flow-diverter stent-like devices on the flow pattern of saccular intracranial aneurysm models: computational fluid dynamics study. Hassan T; Ahmed YM; Hassan AA Acta Neurochir (Wien); 2011 Aug; 153(8):1633-40. PubMed ID: 21647821 [TBL] [Abstract][Full Text] [Related]
14. Personalizing flow-diverter intervention for cerebral aneurysms: from computational hemodynamics to biochemical modeling. Peach TW; Ngoepe M; Spranger K; Zajarias-Fainsod D; Ventikos Y Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1387-407. PubMed ID: 25045060 [TBL] [Abstract][Full Text] [Related]
15. Effects of changing physiologic conditions on the in vivo quantification of hemodynamic variables in cerebral aneurysms treated with flow diverting devices. Mut F; Ruijters D; Babic D; Bleise C; Lylyk P; Cebral JR Int J Numer Method Biomed Eng; 2014 Jan; 30(1):135-42. PubMed ID: 24039143 [TBL] [Abstract][Full Text] [Related]
16. Tuning a lattice-Boltzmann model for applications in computational hemodynamics. Golbert DR; Blanco PJ; Clausse A; Feijóo RA Med Eng Phys; 2012 Apr; 34(3):339-49. PubMed ID: 21880536 [TBL] [Abstract][Full Text] [Related]
17. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor. Chen G; Palmer AF Biotechnol Bioeng; 2009 Apr; 102(6):1603-12. PubMed ID: 19072844 [TBL] [Abstract][Full Text] [Related]
18. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347 [TBL] [Abstract][Full Text] [Related]
19. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Martin DM; Murphy EA; Boyle FJ Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. Fu W; Gu Z; Meng X; Chu B; Qiao A J Biomech; 2010 May; 43(7):1337-42. PubMed ID: 20227079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]