These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 26577476)

  • 1. A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions.
    Nguyen VT; Wibowo SN; Leow YA; Nguyen HH; Liang Z; Leo HL
    Cardiovasc Eng Technol; 2015 Dec; 6(4):412-29. PubMed ID: 26577476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart blood flow simulation: a perspective review.
    Doost SN; Ghista D; Su B; Zhong L; Morsi YS
    Biomed Eng Online; 2016 Aug; 15(1):101. PubMed ID: 27562639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of Computational Fluid Dynamics for Evaluating the Intraventricular Hemodynamics in Single Right Ventricle Based on Echocardiographic Images.
    Chen LJ; Tong ZR; Wang Q; Zhang YQ; Liu JL
    Biomed Res Int; 2018; 2018():1042038. PubMed ID: 29568740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve.
    Yano T; Funayama M; Sudo S; Mitamura Y
    Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.
    Doost SN; Zhong L; Su B; Morsi YS
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):492-507. PubMed ID: 27796137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semi-automated method for patient-specific computational flow modelling of left ventricles.
    Nguyen VT; Loon CJ; Nguyen HH; Liang Z; Leo HL
    Comput Methods Biomech Biomed Engin; 2015; 18(4):401-13. PubMed ID: 23947745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.
    Doost SN; Zhong L; Su B; Morsi YS
    Comput Methods Programs Biomed; 2016 Apr; 127():232-47. PubMed ID: 26849955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics.
    Moosavi MH; Fatouraee N; Katoozian H; Pashaei A; Camara O; Frangi AF
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):740-9. PubMed ID: 22974145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart.
    Schenkel T; Malve M; Reik M; Markl M; Jung B; Oertel H
    Ann Biomed Eng; 2009 Mar; 37(3):503-15. PubMed ID: 19130229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards patient-specific cardiovascular modeling system using the immersed boundary technique.
    Tay WB; Tseng YH; Lin LY; Tseng WY
    Biomed Eng Online; 2011 Jun; 10():52. PubMed ID: 21682851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction.
    Chan BT; Lim E; Chee KH; Abu Osman NA
    Comput Biol Med; 2013 May; 43(4):377-85. PubMed ID: 23428371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics.
    Khalafvand SS; Voorneveld JD; Muralidharan A; Gijsen FJH; Bosch JG; van Walsum T; Haak A; de Jong N; Kenjeres S
    J Biomech; 2018 Jun; 74():116-125. PubMed ID: 29729852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.
    Xu L; Yang M; Ye L; Dong Z
    Technol Health Care; 2015; 23 Suppl 2():S443-51. PubMed ID: 26410511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.
    Gao H; Bijnens N; Coisne D; Lugiez M; Rutten M; D'hooge J
    Ultrasound Med Biol; 2015 Jan; 41(1):99-113. PubMed ID: 25438850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed impact of torsion on LV hemodynamics: A CFD study based on the Chimera technique.
    Canè F; Selmi M; De Santis G; Redaelli A; Segers P; Degroote J
    Comput Biol Med; 2019 Sep; 112():103363. PubMed ID: 31491610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study.
    Khalafvand SS; Ng EY; Zhong L; Hung TK
    Comput Biol Med; 2012 Aug; 42(8):863-70. PubMed ID: 22795507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamics in Normal and Diseased Livers: Application of Image-Based Computational Models.
    George SM; Eckert LM; Martin DR; Giddens DP
    Cardiovasc Eng Technol; 2015 Mar; 6(1):80-91. PubMed ID: 26577105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of vortex formation on left ventricular filling and mitral valve efficiency.
    Pierrakos O; Vlachos PP
    J Biomech Eng; 2006 Aug; 128(4):527-39. PubMed ID: 16813444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.