BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26577659)

  • 1. A First Principles study on Boron-doped Graphene decorated by Ni-Ti-Mg atoms for Enhanced Hydrogen Storage Performance.
    Nachimuthu S; Lai PJ; Leggesse EG; Jiang JC
    Sci Rep; 2015 Nov; 5():16797. PubMed ID: 26577659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of Ti-adsorbed graphene for hydrogen storage using the ab-initio method.
    Park HL; Yoo DS; Yi SC; Chung YC
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6131-5. PubMed ID: 22121672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal (Li, Al, Ca and Ti) absorbed graphene with defects for hydrogen storage: first-principles calculations.
    Park HL; Chung YC
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10624-8. PubMed ID: 22408961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage.
    Wang J; Chen Y; Yuan L; Zhang M; Zhang C
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31252605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti
    Intayot R; Rungnim C; Namuangruk S; Yodsin N; Jungsuttiwong S
    Dalton Trans; 2021 Sep; 50(33):11398-11411. PubMed ID: 34292283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The performance of adsorption, dissociation and diffusion mechanism of hydrogen on the Ti-doped ZrCo(110) surface.
    Wang Q; Kong X; Han H; Sang G; Zhang G; Gao T
    Phys Chem Chem Phys; 2019 Jun; 21(23):12597-12605. PubMed ID: 31150026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effects on hydrogen storage in Ti decorated pyridinic N-doped graphene.
    Kim D; Lee S; Jo S; Chung YC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12757-61. PubMed ID: 23799404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of the H(2) interaction with transition metal (Ti, V, Ni) doped Mg(0001) surface: Implications for H-storage materials.
    Banerjee S; Pillai CG; Majumder C
    J Chem Phys; 2008 Nov; 129(17):174703. PubMed ID: 19045366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
    Shayeganfar F; Shahsavari R
    Langmuir; 2016 Dec; 32(50):13313-13321. PubMed ID: 27771958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Hydrogen Adsorption on the Simultaneously Decorated Graphene Sheet with Titanium and Palladium Atoms.
    Tavakkoli Heravi MJ; Farhadian N
    Langmuir; 2024 Jul; 40(27):13879-13891. PubMed ID: 38922333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hydrogen storage of alkaline earth metal-decorated B
    Duraisamy PD; S PMP; Gopalan P; Angamuthu A
    J Mol Model; 2024 Jan; 30(2):55. PubMed ID: 38291281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcing the tetracene-based two-dimensional C
    Subramani M; Rajamani A; Subramaniam V; Hatshan MR; Gopi S; Ramasamy S
    Environ Res; 2022 Mar; 204(Pt B):112114. PubMed ID: 34571036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the hydrogen storage performance of t-graphene-like two-dimensional boron nitride upon selected lithium decoration.
    El Kassaoui M; Lakhal M; Benyoussef A; El Kenz A; Loulidi M; Mounkachi O
    Phys Chem Chem Phys; 2022 Jun; 24(24):15048-15059. PubMed ID: 35695859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations.
    Liu Y; Ren L; He Y; Cheng HP
    J Phys Condens Matter; 2010 Nov; 22(44):445301. PubMed ID: 21403342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.
    Tan X; Tahini HA; Smith SC
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32815-32822. PubMed ID: 27934167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.
    Chen Y; Wang J; Yuan L; Zhang M; Zhang C
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28767084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen storage in bimetallic Ti-Al sub-nanoclusters supported on graphene.
    Ramos-Castillo CM; Reveles JU; Cifuentes-Quintal ME; Zope RR; de Coss R
    Phys Chem Chem Phys; 2017 Aug; 19(31):21174-21184. PubMed ID: 28752877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron-double-ring sheet, fullerene, and nanotubes: potential hydrogen storage materials.
    Wang J; Zhao HY; Liu Y
    Chemphyschem; 2014 Nov; 15(16):3453-9. PubMed ID: 25139442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks.
    Deshmukh A; Chiu CC; Chen YW; Kuo JL
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25219-28. PubMed ID: 27599537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.