These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26577788)

  • 1. Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana.
    Tunc-Ozdemir M; Fu Y; Jones AM
    Methods Mol Biol; 2016; 1363():155-74. PubMed ID: 26577788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Tripartite Interaction between Two Monomers of a MADS-box Transcription Factor and a Calcium Sensor Protein by BiFC-FRET-FLIM Assay.
    Boora N; Verma V; Khurana R; Gawande G; Bhimrajka S; Chaprana K; Kapoor M; Kapoor S
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 35001908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimolecular Fluorescence Complementation with Improved Gateway-Compatible Vectors to Visualize Protein-Protein Interactions in Plant Cells.
    Goto-Yamada S; Hikino K; Nishimura M; Nakagawa T; Mano S
    Methods Mol Biol; 2018; 1794():245-258. PubMed ID: 29855962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tobacco System for Studying Protein Colocalization and Interactions.
    Zhang J; He S
    Methods Mol Biol; 2021; 2297():167-174. PubMed ID: 33656681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system.
    Tian G; Lu Q; Zhang L; Kohalmi SE; Cui Y
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21947026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation.
    Offenborn JN; Waadt R; Kudla J
    New Phytol; 2015 Oct; 208(1):269-79. PubMed ID: 25919910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells.
    Kwaaitaal M; Keinath NF; Pajonk S; Biskup C; Panstruga R
    Plant Physiol; 2010 Mar; 152(3):1135-47. PubMed ID: 20071602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC).
    Janik K; Stellmach H; Mittelberger C; Hause B
    Methods Mol Biol; 2019; 1875():321-331. PubMed ID: 30362014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay.
    Occhialini A
    Methods Mol Biol; 2018; 1789():177-194. PubMed ID: 29916080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimolecular fluorescence complementation.
    Wong KA; O'Bryan JP
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying interactions between chloroplast proteins in intact plant cells using bimolecular fluorescence complementation and Förster resonance energy transfer.
    Maple J; Møller SG
    Methods Mol Biol; 2011; 775():51-65. PubMed ID: 21863438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo interaction between the tobacco lectin and the core histone proteins.
    Delporte A; De Vos WH; Van Damme EJ
    J Plant Physiol; 2014 Aug; 171(13):1149-56. PubMed ID: 24973587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.
    Pratt EP; Owens JL; Hockerman GH; Hu CD
    Methods Mol Biol; 2016; 1474():153-70. PubMed ID: 27515079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2in1 Vectors Improve In Planta BiFC and FRET Analyses.
    Mehlhorn DG; Wallmeroth N; Berendzen KW; Grefen C
    Methods Mol Biol; 2018; 1691():139-158. PubMed ID: 29043675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation.
    Gehl C; Waadt R; Kudla J; Mendel RR; Hänsch R
    Mol Plant; 2009 Sep; 2(5):1051-8. PubMed ID: 19825679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying Protein-Protein Interactions In Planta Using Advanced Fluorescence Microscopy.
    Somssich M; Simon R
    Methods Mol Biol; 2017; 1610():267-285. PubMed ID: 28439869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BiFC for protein-protein interactions and protein topology: discussing an integrative approach for an old technique.
    Stefano G; Renna L; Brandizzi F
    Methods Mol Biol; 2015; 1242():173-82. PubMed ID: 25408453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cytoplasmic streaming by cytochalasin D is superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged Golgi components.
    Poulsen CP; Vereb G; Geshi N; Schulz A
    Cytometry A; 2013 Sep; 83(9):830-8. PubMed ID: 23520174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Plant Material for Analysis of Protein-Nucleic Acid Interactions by FRET-FLIM.
    Escouboué M; Camborde L; Jauneau A; Gaulin E; Deslandes L
    Methods Mol Biol; 2019; 1991():69-77. PubMed ID: 31041764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.