These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26577816)

  • 1. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.
    Jeong D; Kim J
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):117. PubMed ID: 26577816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method.
    Tang P; Qiu F; Zhang H; Yang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016710. PubMed ID: 16090137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation.
    Ham S; Li Y; Jeong D; Lee C; Kwak S; Hwang Y; Kim J
    J Nonlinear Sci; 2022; 32(6):80. PubMed ID: 36089998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlocal-to-Local Convergence of Cahn-Hilliard Equations: Neumann Boundary Conditions and Viscosity Terms.
    Davoli E; Scarpa L; Trussardi L
    Arch Ration Mech Anal; 2021; 239(1):117-149. PubMed ID: 33487635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory.
    Li JF; Fan J; Zhang HD; Qiu F; Tang P; Yang YL
    Eur Phys J E Soft Matter; 2006 Aug; 20(4):449-57. PubMed ID: 16953344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigorous embedding of cell dynamics simulations in the Cahn-Hilliard-Cook framework: Imposing stability and isotropy.
    Sevink GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053309. PubMed ID: 26066281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.
    Frank F; Liu C; Scanziani A; Alpak FO; Riviere B
    J Colloid Interface Sci; 2018 Aug; 523():282-291. PubMed ID: 29680167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconditionally gradient-stable computational schemes in problems of fast phase transitions.
    Lebedev V; Sysoeva A; Galenko P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026705. PubMed ID: 21405928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation.
    Khodadadian A; Parvizi M; Abbaszadeh M; Dehghan M; Heitzinger C
    Comput Mech; 2019; 64(4):937-949. PubMed ID: 31929667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn-Hilliard equations.
    Avalos E; Higuchi T; Teramoto T; Yabu H; Nishiura Y
    Soft Matter; 2016 Jul; 12(27):5905-14. PubMed ID: 27337660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation.
    Brkić AL; Mitrović D; Novak A
    J Adv Res; 2020 Sep; 25():67-76. PubMed ID: 32922975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models.
    Wu X; van Zwieten GJ; van der Zee KG
    Int J Numer Method Biomed Eng; 2014 Feb; 30(2):180-203. PubMed ID: 24023005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach.
    Ambruş VE; Busuioc S; Wagner AJ; Paillusson F; Kusumaatmaja H
    Phys Rev E; 2019 Dec; 100(6-1):063306. PubMed ID: 31962535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation.
    Miehe C; Hildebrand FE; Böger L
    Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130641. PubMed ID: 24711722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS.
    Wang W; Chen L; Zhou J
    J Sci Comput; 2016 May; 67(2):724-746. PubMed ID: 27110063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the accuracy of unconditionally stable algorithms in the Cahn-Hilliard equation.
    Cheng M; Warren JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):017702. PubMed ID: 17358297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation.
    Puzyrev V; Łoś M; Gurgul G; Calo V; Dzwinel W; Paszyński M
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1269-1281. PubMed ID: 31498000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear relaxation patterns in the Cahn-Hilliard equation: an exact solution.
    Mitlin V
    J Colloid Interface Sci; 2006 May; 297(2):840-4. PubMed ID: 16332371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of damaged-image prediction through Cahn-Hilliard image inpainting.
    Carrillo JA; Kalliadasis S; Liang F; Perez SP
    R Soc Open Sci; 2021 May; 8(5):201294. PubMed ID: 34046183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method.
    Zhu J; Chen LQ; Shen J; Tikare V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3564-72. PubMed ID: 11970189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.