These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26577958)

  • 1. Comparison on thermal transport properties of graphene and phosphorene nanoribbons.
    Peng XF; Chen KQ
    Sci Rep; 2015 Nov; 5():16215. PubMed ID: 26577958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J
    Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiballistic thermal transport in submicron-scale graphene nanoribbons at room-temperature.
    So S; Seol JH; Lee JH
    Nanoscale Adv; 2024 May; 6(11):2919-2927. PubMed ID: 38817424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal transport in bent graphene nanoribbons.
    Zhang J; Wang X
    Nanoscale; 2013 Jan; 5(2):734-43. PubMed ID: 23224108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.
    Pei QX; Zhang X; Ding Z; Zhang YY; Zhang YW
    Phys Chem Chem Phys; 2017 Jul; 19(26):17180-17186. PubMed ID: 28638905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.
    Zhang C; Hao XL; Wang CX; Wei N; Rabczuk T
    Sci Rep; 2017 Jan; 7():41398. PubMed ID: 28120921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport in Phosphorene.
    Qin G; Hu M
    Small; 2018 Mar; 14(12):e1702465. PubMed ID: 29392875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally limited current carrying ability of graphene nanoribbons.
    Liao AD; Wu JZ; Wang X; Tahy K; Jena D; Dai H; Pop E
    Phys Rev Lett; 2011 Jun; 106(25):256801. PubMed ID: 21770659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.