These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26577984)

  • 1. Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment.
    Magennis EP; Hook AL; Davies MC; Alexander C; Williams P; Alexander MR
    Acta Biomater; 2016 Apr; 34():84-92. PubMed ID: 26577984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
    Groen N; Guvendiren M; Rabitz H; Welsh WJ; Kohn J; de Boer J
    Acta Biomater; 2016 Apr; 34():133-142. PubMed ID: 26876875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology.
    Yang L; Pijuan-Galito S; Rho HS; Vasilevich AS; Eren AD; Ge L; Habibović P; Alexander MR; de Boer J; Carlier A; van Rijn P; Zhou Q
    Chem Rev; 2021 Apr; 121(8):4561-4677. PubMed ID: 33705116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial discovery of polymers resistant to bacterial attachment.
    Hook AL; Chang CY; Yang J; Luckett J; Cockayne A; Atkinson S; Mei Y; Bayston R; Irvine DJ; Langer R; Anderson DG; Williams P; Davies MC; Alexander MR
    Nat Biotechnol; 2012 Sep; 30(9):868-875. PubMed ID: 22885723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Assessment and Modeling of a Polymer Library Regulating Human Dental Pulp-Derived Stem Cell Behavior.
    Rasi Ghaemi S; Delalat B; Gronthos S; Alexander MR; Winkler DA; Hook AL; Voelcker NH
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38739-38748. PubMed ID: 30351898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis.
    Zhang D; Lee J; Kilian KA
    Adv Healthc Mater; 2017 Oct; 6(19):. PubMed ID: 28841770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver.
    Monteiro DR; Gorup LF; Takamiya AS; Ruvollo-Filho AC; de Camargo ER; Barbosa DB
    Int J Antimicrob Agents; 2009 Aug; 34(2):103-10. PubMed ID: 19339161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to the rationale discovery of polymeric biomaterials.
    Kohn J; Welsh WJ; Knight D
    Biomaterials; 2007 Oct; 28(29):4171-7. PubMed ID: 17644176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Interactive Zwitterionic Dental Biomaterials for Improving Biofilm Resistance: Characteristics and Applications.
    Mangal U; Kwon JS; Choi SH
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial adhesion to poly-(D,L)lactic acid blended with vitamin E: toward gentle anti-infective biomaterials.
    Campoccia D; Visai L; Renò F; Cangini I; Rizzi M; Poggi A; Montanaro L; Rimondini L; Arciola CR
    J Biomed Mater Res A; 2015 Apr; 103(4):1447-58. PubMed ID: 25046271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of thrombus components in mediating bacterial adhesion to biomaterials.
    Lamba NM; Baumgartner JN; Cooper SL
    J Biomater Sci Polym Ed; 2000; 11(11):1227-37. PubMed ID: 11263810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput methods applied in biomaterial development and discovery.
    Hook AL; Anderson DG; Langer R; Williams P; Davies MC; Alexander MR
    Biomaterials; 2010 Jan; 31(2):187-98. PubMed ID: 19815273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical methods for controlling bacterial colonization on polymer surfaces.
    Echeverria C; Torres MT; Fernández-García M; de la Fuente-Nunez C; Muñoz-Bonilla A
    Biotechnol Adv; 2020 Nov; 43():107586. PubMed ID: 32663616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal.
    Power KA; Fitzgerald KT; Gallagher WM
    Biomaterials; 2010 Sep; 31(26):6667-74. PubMed ID: 20557931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput strategies for the design, discovery, and analysis of biomaterials.
    Kilian KA; Moghe PV
    Acta Biomater; 2016 Apr; 34():v-vi. PubMed ID: 27018334
    [No Abstract]   [Full Text] [Related]  

  • 18. High-Throughput Combinatorial Synthesis of Stimuli-Responsive Materials.
    Rosenfeld A; Levkin PA
    Adv Biosyst; 2019 Mar; 3(3):e1800293. PubMed ID: 32627402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofabrication of mechano-bactericidal surfaces.
    Linklater DP; Juodkazis S; Ivanova EP
    Nanoscale; 2017 Nov; 9(43):16564-16585. PubMed ID: 29082999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High throughput screening for biomaterials discovery.
    Algahtani MS; Scurr DJ; Hook AL; Anderson DG; Langer RS; Burley JC; Alexander MR; Davies MC
    J Control Release; 2014 Sep; 190():115-26. PubMed ID: 24993427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.