These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26578168)

  • 1. Evaluation of microbially enhanced composting of sophora flavescens residues.
    Wang HB; Han LR; Feng JT; Zhang X
    J Environ Sci Health B; 2016 Feb; 51(2):63-70. PubMed ID: 26578168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: A meta-analysis.
    Nigussie A; Dume B; Ahmed M; Mamuye M; Ambaw G; Berhiun G; Biresaw A; Aticho A
    Waste Manag; 2021 Apr; 125():220-234. PubMed ID: 33711736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of amendments on windrow composting of sugar industry pressmud.
    Satisha GC; Devarajan L
    Waste Manag; 2007; 27(9):1083-91. PubMed ID: 16876397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-scale of composting process of biogas residues from corn stover anaerobic digestion: Physical-chemical, biology parameters and maturity indexes during whole process.
    Meng X; Yan J; Zuo B; Wang Y; Yuan X; Cui Z
    Bioresour Technol; 2020 Apr; 302():122742. PubMed ID: 32007856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring dynamics and associations of dominant lignocellulose degraders in tomato stalk composting.
    Zhang X; Zhu Y; Li J; Zhu P; Liang B
    J Environ Manage; 2021 Sep; 294():113162. PubMed ID: 34214942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Degradation of cyanide and maturity in cassava processing wastes composting].
    Lü YC; Wang XF; Zhu WB; Cheng X; Cui ZJ
    Huan Jing Ke Xue; 2009 May; 30(5):1556-60. PubMed ID: 19558134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process.
    Lu WJ; Wang HT; Nie YF; Wang ZC; Huang DY; Qiu XY; Chen JC
    J Environ Sci Health B; 2004; 39(5-6):871-87. PubMed ID: 15620093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment.
    Meng X; Liu B; Zhang H; Wu J; Yuan X; Cui Z
    Bioresour Technol; 2019 Mar; 276():281-287. PubMed ID: 30640023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste.
    Estrada-Bonilla GA; Lopes CM; Durrer A; Alves PRL; Passaglia N; Cardoso EJBN
    Syst Appl Microbiol; 2017 Jul; 40(5):308-313. PubMed ID: 28645701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen transformations during pig manure composting.
    Huang GF; Wu QT; Li FB; Wong JW
    J Environ Sci (China); 2001 Oct; 13(4):401-5. PubMed ID: 11723923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum.
    Manu MK; Kumar R; Garg A
    Bioresour Technol; 2017 Jun; 234():167-177. PubMed ID: 28319765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mineral forms of nitrogen and sulfur and enzymatic activities during composting of lignocellulosic waste and chicken feathers.
    Bohacz J
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10333-10342. PubMed ID: 30761493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inoculation in composting processes: modifications in lignocellulosic fraction.
    Vargas-García MC; Suárez-Estrella F; López MJ; Moreno J
    Waste Manag; 2007; 27(9):1099-107. PubMed ID: 16996728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.
    Saidi N; Kouki S; M'hiri F; Jedidi N; Mahrouk M; Hassen A; Ouzari H
    J Environ Sci (China); 2009; 21(10):1452-8. PubMed ID: 20000002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.
    Zhou Y; Selvam A; Wong JW
    Bioresour Technol; 2014 Sep; 168():229-34. PubMed ID: 24951275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity.
    Nakhshiniev B; Biddinika MK; Gonzales HB; Sumida H; Yoshikawa K
    Bioresour Technol; 2014 Jan; 151():306-13. PubMed ID: 24262840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-composting of green waste and biogas waste: physical, chemical parameters and quality of ripe compound.
    Bortoloti MA; Challiol AZ; Sicchieri IMB; Kuroda EK; Fernandes F
    Environ Sci Pollut Res Int; 2024 May; 31(23):34258-34270. PubMed ID: 38700772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.
    Nakasaki K; Araya S; Mimoto H
    Bioresour Technol; 2013 Sep; 144():521-8. PubMed ID: 23886646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants.
    Gaind S; Pandey AK; Lata
    J Basic Microbiol; 2005; 45(4):301-11. PubMed ID: 16028202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiological parameters as indicators of compost maturity.
    Tiquia SM
    J Appl Microbiol; 2005; 99(4):816-28. PubMed ID: 16162232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.