These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26578287)

  • 21. Control of strong light-matter coupling using the capacitance of metamaterial nanocavities.
    Benz A; Campione S; Klem JF; Sinclair MB; Brener I
    Nano Lett; 2015 Mar; 15(3):1959-66. PubMed ID: 25625404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically controllable terahertz square-loop metamaterial based on VO₂ thin film.
    Shin JH; Park KH; Ryu HC
    Nanotechnology; 2016 May; 27(19):195202. PubMed ID: 27039711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances.
    Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R
    Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC Microcavities.
    Keller J; Scalari G; Cibella S; Maissen C; Appugliese F; Giovine E; Leoni R; Beck M; Faist J
    Nano Lett; 2017 Dec; 17(12):7410-7415. PubMed ID: 29172537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. THz-driven nonlinear intersubband dynamics in quantum wells.
    Dietze D; Darmo J; Unterrainer K
    Opt Express; 2012 Oct; 20(21):23053-60. PubMed ID: 23188269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic metallic nanocavities for strong light-matter interaction to quantum-well intersubband excitations.
    Benz A; Campione S; Liu S; Montano I; Klem JF; Sinclair MB; Capolino F; Brener I
    Opt Express; 2013 Dec; 21(26):32572-81. PubMed ID: 24514850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong coupling of metamaterial resonances to intersubband transitions of quantum dots for enhanced second-harmonic generation.
    Hamidi J; Zavvari M
    Appl Opt; 2018 Dec; 57(36):10505-10509. PubMed ID: 30645397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active terahertz metamaterial devices.
    Chen HT; Padilla WJ; Zide JM; Gossard AC; Taylor AJ; Averitt RD
    Nature; 2006 Nov; 444(7119):597-600. PubMed ID: 17136089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors.
    Shrekenhamer D; Rout S; Strikwerda AC; Bingham C; Averitt RD; Sonkusale S; Padilla WJ
    Opt Express; 2011 May; 19(10):9968-75. PubMed ID: 21643254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the strong light-matter interaction between an elongated In_{0.3}Ga_{0.7}As quantum dot and a micropillar cavity using external magnetic fields.
    Reitzenstein S; Münch S; Franeck P; Rahimi-Iman A; Löffler A; Höfling S; Worschech L; Forchel A
    Phys Rev Lett; 2009 Sep; 103(12):127401. PubMed ID: 19792457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optically implemented broadband blueshift switch in the terahertz regime.
    Shen NH; Massaouti M; Gokkavas M; Manceau JM; Ozbay E; Kafesaki M; Koschny T; Tzortzakis S; Soukoulis CM
    Phys Rev Lett; 2011 Jan; 106(3):037403. PubMed ID: 21405297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.
    Chiu KP; Kao TS; Tsai DP
    J Microsc; 2008 Feb; 229(Pt 2):313-9. PubMed ID: 18304091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrete mode tuning in terahertz quantum cascade lasers.
    Chakraborty S; Marshall O; Hsin CW; Khairuzzaman M; Beere H; Ritchie D
    Opt Express; 2012 Dec; 20(26):B306-14. PubMed ID: 23262866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonant metamaterial detectors based on THz quantum-cascade structures.
    Benz A; Krall M; Schwarz S; Dietze D; Detz H; Andrews AM; Schrenk W; Strasser G; Unterrainer K
    Sci Rep; 2014 Mar; 4():4269. PubMed ID: 24608677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems.
    Otsuji T; Meziani YM; Nishimura T; Suemitsu T; Knap W; Sano E; Asano T; Popov VV
    J Phys Condens Matter; 2008 Sep; 20(38):384206. PubMed ID: 21693814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low loss and magnetic field-tunable superconducting terahertz metamaterial.
    Jin B; Zhang C; Engelbrecht S; Pimenov A; Wu J; Xu Q; Cao C; Chen J; Xu W; Kang L; Wu P
    Opt Express; 2010 Aug; 18(16):17504-9. PubMed ID: 20721135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.
    Khodaee M; Banakermani M; Baghban H
    Appl Opt; 2015 Oct; 54(29):8617-24. PubMed ID: 26479795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microelectromechanically tunable multiband metamaterial with preserved isotropy.
    Pitchappa P; Ho CP; Qian Y; Dhakar L; Singh N; Lee C
    Sci Rep; 2015 Jun; 5():11678. PubMed ID: 26115416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.