BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26578371)

  • 1. Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands.
    Perkins WT; Bird G; Jacobs SR; Devoy C
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5592-608. PubMed ID: 26578371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.
    Cele EN; Maboeta M
    J Environ Manage; 2016 Jan; 165():167-174. PubMed ID: 26433357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mine tailings composition in a historic site: implications for ecological restoration.
    Courtney R
    Environ Geochem Health; 2013 Feb; 35(1):79-88. PubMed ID: 22699431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments.
    Pardo T; Bernal MP; Clemente R
    Chemosphere; 2017 Jul; 178():556-564. PubMed ID: 28351014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on in situ phytoremediation of mine tailings.
    Wang L; Ji B; Hu Y; Liu R; Sun W
    Chemosphere; 2017 Oct; 184():594-600. PubMed ID: 28623832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings.
    Forsberg LS; Ledin S
    Sci Total Environ; 2006 Apr; 358(1-3):21-35. PubMed ID: 15990158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.
    Zhang X; Yang H; Cui Z
    Water Sci Technol; 2017 Oct; 76(7-8):1867-1874. PubMed ID: 28991801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge.
    Anawar HM
    J Environ Manage; 2015 Aug; 158():111-21. PubMed ID: 25979297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extensive review on restoration technologies for mining tailings.
    Sun W; Ji B; Khoso SA; Tang H; Liu R; Wang L; Hu Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33911-33925. PubMed ID: 30324370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.
    Pardo T; Bes C; Bernal MP; Clemente R
    Environ Toxicol Chem; 2016 Nov; 35(11):2874-2884. PubMed ID: 27019401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings.
    Lee SH; Ji W; Lee WS; Koo N; Koh IH; Kim MS; Park JS
    J Environ Manage; 2014 Jun; 139():15-21. PubMed ID: 24681360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils.
    Mu J; Hu Z; Huang L; Xie Z; Holm PE
    Environ Pollut; 2020 Feb; 257():113565. PubMed ID: 31733972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches.
    Hassan S; Bhadwal SS; Khan M; Sabreena ; Nissa KU; Shah RA; Bhat HM; Bhat SA; Lone IM; Ganai BA
    Chemosphere; 2024 May; 356():141889. PubMed ID: 38583533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selected rhizobacteria facilitated phytoremediation of barren and heavy metal contaminated gold mine tailings by Festuca arundinacea.
    Chen X; Sun C; Zhang Q; Jiang X; Liu C; Lin H; Li B
    Chemosphere; 2023 Oct; 337():139297. PubMed ID: 37353171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings.
    Parraga-Aguado I; Querejeta JI; González-Alcaraz MN; Conesa HM
    Sci Total Environ; 2014 Jul; 485-486():406-414. PubMed ID: 24742549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment.
    Li X; Wang X; Chen Y; Yang X; Cui Z
    Ecotoxicol Environ Saf; 2019 Jan; 168():1-8. PubMed ID: 30384156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico.
    Sánchez-López AS; Del Carmen A González-Chávez M; Carrillo-González R; Vangronsveld J; Díaz-Garduño M
    Int J Phytoremediation; 2015; 17(1-6):476-84. PubMed ID: 25495938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.