These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26578379)
1. Fate of ivermectin in the terrestrial and aquatic environment: mobility, degradation, and toxicity towards Daphnia similis. Rath S; Pereira LA; Bosco SM; Maniero MG; Fostier AH; Guimarães JR Environ Sci Pollut Res Int; 2016 Mar; 23(6):5654-66. PubMed ID: 26578379 [TBL] [Abstract][Full Text] [Related]
2. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation. Dionisio AC; Rath S Chemosphere; 2016 May; 151():17-29. PubMed ID: 26923238 [TBL] [Abstract][Full Text] [Related]
3. Are the parasiticidal avermectins resistant to dissipation in the environment? The case of eprinomectin. Litskas VD; Karamanlis XN; Batzias GC; Tsiouris SE Environ Int; 2013 Oct; 60():48-55. PubMed ID: 24013019 [TBL] [Abstract][Full Text] [Related]
4. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils. Francisco JG; Mendes KF; Pimpinato RF; Tornisielo VL; Guimarães ACD J Environ Sci Health B; 2017 Jul; 52(7):470-475. PubMed ID: 28353389 [TBL] [Abstract][Full Text] [Related]
5. Mobility of pharmaceutical compounds in the terrestrial environment: Adsorption kinetics of the macrocyclic lactone eprinomectin in soils. Vassilis LD; George BC; Charalampos PG; Athina PV; Xanthippos KN Chemosphere; 2016 Feb; 144():1201-6. PubMed ID: 26469933 [TBL] [Abstract][Full Text] [Related]
6. Fate and transport of chlormequat in subsurface environments. Juhler RK; Henriksen T; Rosenbom AE; Kjaer J Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799 [TBL] [Abstract][Full Text] [Related]
7. Aerobic dissipation of avermectins and moxidectin in subtropical soils and dissipation of abamectin in a field study. de Oliveira Ferreira F; Porto RS; Rath S Ecotoxicol Environ Saf; 2019 Nov; 183():109489. PubMed ID: 31394379 [TBL] [Abstract][Full Text] [Related]
8. Sorption of the antiparasitic drug eprinomectin in three soils. Litskas VD; Karamanlis XN; Batzias GC; Kamarianos AP Chemosphere; 2011 Jan; 82(2):193-8. PubMed ID: 21055791 [TBL] [Abstract][Full Text] [Related]
9. Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. Rath S; Fostier AH; Pereira LA; Dioniso AC; de Oliveira Ferreira F; Doretto KM; Maniero Peruchi L; Viera A; de Oliveira Neto OF; Dal Bosco SM; Martínez-Mejía MJ Chemosphere; 2019 Jan; 214():111-122. PubMed ID: 30261417 [TBL] [Abstract][Full Text] [Related]
10. Sorption of sulfadiazine on Brazilian soils. Doretto KM; Rath S Chemosphere; 2013 Feb; 90(6):2027-34. PubMed ID: 23245764 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Krogh KA; Jensen GG; Schneider MK; Fenner K; Halling-Sørensen B Chemosphere; 2009 May; 75(8):1097-104. PubMed ID: 19217643 [TBL] [Abstract][Full Text] [Related]
12. Semifield assessment of the runoff potential and environmental risk of the parasiticide drug ivermectin under Mediterranean conditions. Fernández C; Porcel MA; Alonso A; San Andrés M; Tarazona JV Environ Sci Pollut Res Int; 2011 Aug; 18(7):1194-201. PubMed ID: 21373858 [TBL] [Abstract][Full Text] [Related]
13. Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms. Peruchi LM; Fostier AH; Rath S Chemosphere; 2015 Jan; 119():310-317. PubMed ID: 25036946 [TBL] [Abstract][Full Text] [Related]
14. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Doretto KM; Peruchi LM; Rath S Sci Total Environ; 2014 Apr; 476-477():406-14. PubMed ID: 24486496 [TBL] [Abstract][Full Text] [Related]
15. Sorption of thiabendazole in sub-tropical Brazilian soils. de Oliveira Neto OF; Arenas AY; Fostier AH Environ Sci Pollut Res Int; 2017 Jul; 24(19):16503-16512. PubMed ID: 28555395 [TBL] [Abstract][Full Text] [Related]
16. Sorption and mobility of ivermectin in different soils. Krogh KA; Søeborg T; Brodin B; Halling-Sørensen B J Environ Qual; 2008; 37(6):2202-11. PubMed ID: 18948473 [TBL] [Abstract][Full Text] [Related]
17. Aquatic toxicity of ivermectin in cattle dung assessed using microcosms. Mesa LM; Lindt I; Negro L; Gutierrez MF; Mayora G; Montalto L; Ballent M; Lifschitz A Ecotoxicol Environ Saf; 2017 Oct; 144():422-429. PubMed ID: 28654874 [TBL] [Abstract][Full Text] [Related]
18. Tylosin sorption to silty clay loam soils, swine manure, and sand. Clay SA; Liu Z; Thaler R; Kennouche H J Environ Sci Health B; 2005; 40(6):841-50. PubMed ID: 16194921 [TBL] [Abstract][Full Text] [Related]
19. Temperature Dependent Adsorption-Desorption Behaviour of Pendimethalin in Punjab Soils. Kaur P; Makkar A; Kaur P; Shilpa Bull Environ Contam Toxicol; 2018 Jan; 100(1):167-175. PubMed ID: 29234830 [TBL] [Abstract][Full Text] [Related]
20. Sorption, degradation and mobility of ptaquiloside, a carcinogenic Bracken (Pteridium sp.) constituent, in the soil environment. Rasmussen LH; Hansen HC; Lauren D Chemosphere; 2005 Feb; 58(6):823-35. PubMed ID: 15621196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]