These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 26578451)

  • 1. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy.
    Śledzińska A; Menger L; Bergerhoff K; Peggs KS; Quezada SA
    Mol Oncol; 2015 Dec; 9(10):1936-65. PubMed ID: 26578451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not All Immune Checkpoints Are Created Equal.
    De Sousa Linhares A; Leitner J; Grabmeier-Pfistershammer K; Steinberger P
    Front Immunol; 2018; 9():1909. PubMed ID: 30233564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blockade of immune checkpoints in cancer immunotherapy.
    Pardoll DM
    Nat Rev Cancer; 2012 Mar; 12(4):252-64. PubMed ID: 22437870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity.
    Ramsay AG
    Br J Haematol; 2013 Aug; 162(3):313-25. PubMed ID: 23691926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets.
    Tsai HF; Hsu PN
    J Biomed Sci; 2017 May; 24(1):35. PubMed ID: 28545567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy.
    Khan M; Arooj S; Wang H
    Front Immunol; 2021; 12():651634. PubMed ID: 34531847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glucocorticoids prednisone and dexamethasone differentially modulate T cell function in response to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade.
    Okoye IS; Xu L; Walker J; Elahi S
    Cancer Immunol Immunother; 2020 Aug; 69(8):1423-1436. PubMed ID: 32246174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation of immune checkpoint therapy in cancer: new developments and challenges.
    Marin-Acevedo JA; Dholaria B; Soyano AE; Knutson KL; Chumsri S; Lou Y
    J Hematol Oncol; 2018 Mar; 11(1):39. PubMed ID: 29544515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy.
    Intlekofer AM; Thompson CB
    J Leukoc Biol; 2013 Jul; 94(1):25-39. PubMed ID: 23625198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune checkpoint combinations from mouse to man.
    Ai M; Curran MA
    Cancer Immunol Immunother; 2015 Jul; 64(7):885-92. PubMed ID: 25555570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TIGIT: A Key Inhibitor of the Cancer Immunity Cycle.
    Manieri NA; Chiang EY; Grogan JL
    Trends Immunol; 2017 Jan; 38(1):20-28. PubMed ID: 27793572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy.
    Kean LS; Turka LA; Blazar BR
    Immunol Rev; 2017 Mar; 276(1):192-212. PubMed ID: 28258702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.