These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26578491)

  • 1. Microscopic observation of glass bead movement in soft tissue-mimicking phantom under ultrasound PW mode scanning.
    Liu L; Funamoto K; Tanabe M; Hayase T
    J Med Ultrason (2001); 2015 Jan; 42(1):59-63. PubMed ID: 26578491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of ultrasound radiation force-driven twinkling sign using PVA-H gel and glass beads tissue-mimicking phantom.
    Liu L; Funamoto K; Ozawa K; Ohta M; Hayase T; Ogasawara M
    J Med Ultrason (2001); 2013 Jul; 40(3):197-203. PubMed ID: 27277236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental study on micro calcification detection using twinkling sign (TS): the effect of stiffness of surrounding tissue on the appearance of TS.
    Liu L; Funamoto K; Tanabe M; Hayase T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1390-3. PubMed ID: 24109956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(vinyl alcohol) gel ultrasound phantom with durability and visibility of internal flow.
    Funamoto K; Yamashita O; Hayase T
    J Med Ultrason (2001); 2015 Jan; 42(1):17-23. PubMed ID: 26578486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation.
    Christopher DA; Burns PN; Starkoski BG; Foster FS
    Ultrasound Med Biol; 1997; 23(7):997-1015. PubMed ID: 9330444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rotating cylinder phantom for flow and tissue color Doppler testing.
    Walker A; Henriksen E; Ringqvist I; Ask P
    Ultrasound Med Biol; 2009 Nov; 35(11):1892-8. PubMed ID: 19713031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom.
    Suomi V; Edwards D; Cleveland R
    Ultrasound Med Biol; 2015 Dec; 41(12):3216-32. PubMed ID: 26330365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between color Doppler twinkling artifact and acoustic shadowing for renal calculus detection: an in vitro study.
    Shabana W; Bude RO; Rubin JM
    Ultrasound Med Biol; 2009 Feb; 35(2):339-50. PubMed ID: 19041171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the acoustic radiation force in color Doppler twinkling artifacts.
    Yang JH; Kang G; Choi MJ
    Ultrasonography; 2015 Apr; 34(2):109-14. PubMed ID: 25754365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominant factor analysis of B-flow twinkling sign with phantom and simulation data.
    Lu W; Haider B
    J Med Ultrason (2001); 2017 Jan; 44(1):37-50. PubMed ID: 27687733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Speed Imaging of Microsphere Transport by Cavitation Activity in a Tissue-Mimicking Phantom.
    Vince J; Lewis A; Stride E
    Ultrasound Med Biol; 2023 Jun; 49(6):1415-1421. PubMed ID: 36931999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of harmonic and conventional power Doppler ultrasonography for assessment of slow flow in hyperechoic tissue: experimental study using a Doppler phantom.
    Kim AY; Kim TK; Kim YH; Han JK; Choi BI
    Invest Radiol; 2000 Feb; 35(2):105-10. PubMed ID: 10674454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Ultrasound Phantom Made of Transparent Material: Feasibility of Optical Particle Image Velocimetry.
    Hashuro MSS; Tupin S; Putra NK; Daibo K; Inoue K; Ishii T; Kosukegawa H; Funamoto K; Hayase T; Ohta M
    Ultrasound Med Biol; 2023 Jun; 49(6):1385-1394. PubMed ID: 36878829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Pulse Repetition Frequency Adjustment for 3- and 4-Dimensional Power Doppler Quantification.
    Miyague AH; Pavan TZ; Soares CA; De Catte L; Nastri CO; Welsh AW; Martins WP
    J Ultrasound Med; 2015 Dec; 34(12):2245-51. PubMed ID: 26543167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatterer size estimation in pulse-echo ultrasound using focused sources: calibration measurements and phantom experiments.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2004 Jul; 116(1):594-602. PubMed ID: 15296019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining optimal axial and lateral resolution for estimating scatterer properties from volumes using ultrasound backscatter.
    Oelze ML; O'Brien WD
    J Acoust Soc Am; 2004 Jun; 115(6):3226-34. PubMed ID: 15237847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.
    Huang CC; Lee PY; Chen PY; Liu TY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):182-8. PubMed ID: 22293750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate guidance of a catheter by ultrasound imaging and identification of a catheter tip by pulsed-wave Doppler.
    McMahon EM; Jiamsripong P; Katayama M; Chaliki HP; Fatemi M; Belohlavek M
    Pacing Clin Electrophysiol; 2012 Jan; 35(1):44-50. PubMed ID: 22054263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of volumetric flow with no angle correction using multiplanar pulsed Doppler ultrasound.
    Poulsen JK; Kim WY
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):589-99. PubMed ID: 8987263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.