These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26578511)

  • 1. Characterization of a Cyanobacterial Chloride-pumping Rhodopsin and Its Conversion into a Proton Pump.
    Hasemi T; Kikukawa T; Kamo N; Demura M
    J Biol Chem; 2016 Jan; 291(1):355-62. PubMed ID: 26578511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
    Besaw JE; Ou WL; Morizumi T; Eger BT; Sanchez Vasquez JD; Chu JHY; Harris A; Brown LS; Miller RJD; Ernst OP
    J Biol Chem; 2020 Oct; 295(44):14793-14804. PubMed ID: 32703899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Mechanism of Cl
    Kikukawa T
    Adv Exp Med Biol; 2021; 1293():55-71. PubMed ID: 33398807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.
    Inoue K; Nomura Y; Kandori H
    J Biol Chem; 2016 May; 291(19):9883-93. PubMed ID: 26929409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical study of a cyanobacterial chloride-ion pumping rhodopsin.
    Hasemi T; Kikukawa T; Watanabe Y; Aizawa T; Miyauchi S; Kamo N; Demura M
    Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):136-146. PubMed ID: 30529327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering an inward proton transport from a bacterial sensor rhodopsin.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    J Am Chem Soc; 2009 Nov; 131(45):16439-44. PubMed ID: 19848403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence of a Haloarchaeal Halorhodopsin-Like Cl
    Nakajima Y; Tsukamoto T; Kumagai Y; Ogura Y; Hayashi T; Song J; Kikukawa T; Demura M; Kogure K; Sudo Y; Yoshizawa S
    Microbes Environ; 2018 Mar; 33(1):89-97. PubMed ID: 29553064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps.
    Muroda K; Nakashima K; Shibata M; Demura M; Kandori H
    Biochemistry; 2012 Jun; 51(23):4677-84. PubMed ID: 22583333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations conferring SO
    Doi Y; Watanabe J; Nii R; Tsukamoto T; Demura M; Sudo Y; Kikukawa T
    Sci Rep; 2022 Sep; 12(1):16422. PubMed ID: 36180556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eubacterial rhodopsins - unique photosensors and diverse ion pumps.
    Brown LS
    Biochim Biophys Acta; 2014 May; 1837(5):553-61. PubMed ID: 23748216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H
    Inoue S; Yoshizawa S; Nakajima Y; Kojima K; Tsukamoto T; Kikukawa T; Sudo Y
    Phys Chem Chem Phys; 2018 Jan; 20(5):3172-3183. PubMed ID: 29034950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of bacteriorhodopsin into a chloride ion pump.
    Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK
    Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria.
    Yoshizawa S; Kumagai Y; Kim H; Ogura Y; Hayashi T; Iwasaki W; DeLong EF; Kogure K
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6732-7. PubMed ID: 24706784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage.
    Hasegawa M; Hosaka T; Kojima K; Nishimura Y; Nakajima Y; Kimura-Someya T; Shirouzu M; Sudo Y; Yoshizawa S
    Sci Rep; 2020 Oct; 10(1):16752. PubMed ID: 33028840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin.
    Harris A; Saita M; Resler T; Hughes-Visentin A; Maia R; Pranga-Sellnau F; Bondar AN; Heberle J; Brown LS
    Phys Chem Chem Phys; 2018 Jan; 20(5):3184-3199. PubMed ID: 29057415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution.
    Luecke H; Schobert B; Richter HT; Cartailler JP; Lanyi JK
    Science; 1999 Oct; 286(5438):255-61. PubMed ID: 10514362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting a Natural-Light-Driven Outward Proton Pump Rhodopsin into an Artificial Inward Proton Pump.
    MarĂ­n MDC; Konno M; Yawo H; Inoue K
    J Am Chem Soc; 2023 May; 145(20):10938-10942. PubMed ID: 37083435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inward proton transport using Anabaena sensory rhodopsin.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    J Microbiol; 2011 Feb; 49(1):1-6. PubMed ID: 21369972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Heterogeneity of Retinal Chromophore in Chloride Pump Rhodopsins Revealed by Raman Optical Activity.
    Ohya M; Kikukawa T; Matsuo J; Tsukamoto T; Nagaura R; Fujisawa T; Unno M
    J Phys Chem B; 2023 Jun; 127(21):4775-4782. PubMed ID: 37201188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.