These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26578557)

  • 1. LegumeIP 2.0--a platform for the study of gene function and genome evolution in legumes.
    Li J; Dai X; Zhuang Z; Zhao PX
    Nucleic Acids Res; 2016 Jan; 44(D1):D1189-94. PubMed ID: 26578557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes.
    Li J; Dai X; Liu T; Zhao PX
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1221-9. PubMed ID: 22110036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LegumeIP V3: from models to crops-an integrative gene discovery platform for translational genomics in legumes.
    Dai X; Zhuang Z; Boschiero C; Dong Y; Zhao PX
    Nucleic Acids Res; 2021 Jan; 49(D1):D1472-D1479. PubMed ID: 33166388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors.
    Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Bioinformatics; 2010 Jan; 26(2):290-1. PubMed ID: 19933159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes.
    Wang Z; Cheng K; Wan L; Yan L; Jiang H; Liu S; Lei Y; Liao B
    BMC Genomics; 2015 Dec; 16():1053. PubMed ID: 26651343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Updates on Legume Genome Sequencing.
    Ha J; Lee SH
    Methods Mol Biol; 2020; 2107():1-18. PubMed ID: 31893440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.
    Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B
    PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The model legume genomes.
    Cannon SB
    Methods Mol Biol; 2013; 1069():1-14. PubMed ID: 23996304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.
    Verma M; Kumar V; Patel RK; Garg R; Jain M
    PLoS One; 2015; 10(8):e0136880. PubMed ID: 26322998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Medicago truncatula gene expression atlas web server.
    He J; Benedito VA; Wang M; Murray JD; Zhao PX; Tang Y; Udvardi MK
    BMC Bioinformatics; 2009 Dec; 10():441. PubMed ID: 20028527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules.
    Purayannur S; Kumar K; Kaladhar VC; Verma PK
    Sci Rep; 2017 Jul; 7(1):5026. PubMed ID: 28694440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of the HD-ZIP I gene family in legume genomes.
    Li Z; Jiang H; Zhou L; Deng L; Lin Y; Peng X; Yan H; Cheng B
    Gene; 2014 Jan; 533(1):218-28. PubMed ID: 24095777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus.
    Neupane A; Nepal MP; Benson BV; Macarthur KJ; Piya S
    Plant Signal Behav; 2013 Nov; 8(11):e27189. PubMed ID: 24317362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Legume Information System (LIS): an integrated information resource for comparative legume biology.
    Gonzales MD; Archuleta E; Farmer A; Gajendran K; Grant D; Shoemaker R; Beavis WD; Waugh ME
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D660-5. PubMed ID: 15608283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.
    Bhattacharjee A; Ghangal R; Garg R; Jain M
    PLoS One; 2015; 10(3):e0119198. PubMed ID: 25745864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Legume genomics: understanding biology through DNA and RNA sequencing.
    O'Rourke JA; Bolon YT; Bucciarelli B; Vance CP
    Ann Bot; 2014 Jun; 113(7):1107-20. PubMed ID: 24769535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and microsynteny of the apyrase gene family in three legume genomes.
    Cannon SB; McCombie WR; Sato S; Tabata S; Denny R; Palmer L; Katari M; Young ND; Stacey G
    Mol Genet Genomics; 2003 Dec; 270(4):347-61. PubMed ID: 14598165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Legume Resources: MtDB and Medicago.Org.
    Retzel EF; Johnson JE; Crow JA; Lamblin AF; Paule CE
    Methods Mol Biol; 2007; 406():261-74. PubMed ID: 18287697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaption and poplar genomics.
    Ma Y; Xu T; Wan D; Ma T; Shi S; Liu J; Hu Q
    BMC Genomics; 2015 Mar; 16(1):205. PubMed ID: 25881271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and structural diversification of Nictaba-like lectin genes in food crops with a focus on soybean (Glycine max).
    Van Holle S; Rougé P; Van Damme EJM
    Ann Bot; 2017 Mar; 119(5):901-914. PubMed ID: 28087663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.