These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 26578603)
1. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Gao F; Simon AE Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603 [TBL] [Abstract][Full Text] [Related]
2. An RNA Element That Facilitates Programmed Ribosomal Readthrough in Turnip Crinkle Virus Adopts Multiple Conformations. Kuhlmann MM; Chattopadhyay M; Stupina VA; Gao F; Simon AE J Virol; 2016 Oct; 90(19):8575-91. PubMed ID: 27440887 [TBL] [Abstract][Full Text] [Related]
3. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related]
4. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2. Kim YG; Maas S; Rich A Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762 [TBL] [Abstract][Full Text] [Related]
6. Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants. Wang X; Wong SM; Liu DX Nucleic Acids Res; 2006; 34(4):1250-60. PubMed ID: 16500894 [TBL] [Abstract][Full Text] [Related]
7. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. Cho CP; Lin SC; Chou MY; Hsu HT; Chang KY PLoS One; 2013; 8(4):e62283. PubMed ID: 23638024 [TBL] [Abstract][Full Text] [Related]
8. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156 [TBL] [Abstract][Full Text] [Related]
9. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses. Wang G; Yang Y; Huang X; Du Z J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560 [TBL] [Abstract][Full Text] [Related]
10. The genome organization and affinities of an Australian isolate of carrot mottle umbravirus. Gibbs MJ; Cooper JI; Waterhouse PM Virology; 1996 Oct; 224(1):310-3. PubMed ID: 8862426 [TBL] [Abstract][Full Text] [Related]
11. Structure of the RNA signal essential for translational frameshifting in HIV-1. Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937 [TBL] [Abstract][Full Text] [Related]
12. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Giedroc DP; Theimer CA; Nixon PL J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589 [TBL] [Abstract][Full Text] [Related]
13. A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Barry JK; Miller WA Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11133-8. PubMed ID: 12149516 [TBL] [Abstract][Full Text] [Related]
14. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859 [TBL] [Abstract][Full Text] [Related]
15. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. Mikkelsen AA; Gao F; Carino E; Bera S; Simon AE Nucleic Acids Res; 2023 Oct; 51(19):10700-10718. PubMed ID: 37742076 [TBL] [Abstract][Full Text] [Related]
16. Stem-loop structure of Cocksfoot mottle virus RNA is indispensable for programmed -1 ribosomal frameshifting. Tamm T; Suurväli J; Lucchesi J; Olspert A; Truve E Virus Res; 2009 Dec; 146(1-2):73-80. PubMed ID: 19748532 [TBL] [Abstract][Full Text] [Related]
17. A long-distance RNA-RNA interaction plays an important role in programmed -1 ribosomal frameshifting in the translation of p88 replicase protein of Red clover necrotic mosaic virus. Tajima Y; Iwakawa HO; Kaido M; Mise K; Okuno T Virology; 2011 Aug; 417(1):169-78. PubMed ID: 21703656 [TBL] [Abstract][Full Text] [Related]
18. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Kim KH; Lommel SA Virology; 1998 Oct; 250(1):50-9. PubMed ID: 9770419 [TBL] [Abstract][Full Text] [Related]
19. Identification and analysis of the site of -1 ribosomal frameshifting in red clover necrotic mosaic virus. Kim KH; Lommel SA Virology; 1994 May; 200(2):574-82. PubMed ID: 8178444 [TBL] [Abstract][Full Text] [Related]
20. Conserved Structure Associated with Different 3'CITEs Is Important for Translation of Umbraviruses. Bera S; Ilyas M; Mikkelsen AA; Simon AE Viruses; 2023 Feb; 15(3):. PubMed ID: 36992347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]