These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 26578760)
1. Formation and evolution of molecular products in α-pinene secondary organic aerosol. Zhang X; McVay RC; Huang DD; Dalleska NF; Aumont B; Flagan RC; Seinfeld JH Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14168-73. PubMed ID: 26578760 [TBL] [Abstract][Full Text] [Related]
2. Modeling the formation of secondary organic aerosol. 1. Application of theoretical principles to measurements obtained in the alpha-pinene/, beta-pinene/, sabinene/, delta3-carene/, and cyclohexane/ozone systems. Pankow JF; Seinfeld JH; Asher WE; Erdakos GB Environ Sci Technol; 2001 Mar; 35(6):1164-72. PubMed ID: 11347929 [TBL] [Abstract][Full Text] [Related]
3. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals. Qi L; Nakao S; Cocker DR J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755 [TBL] [Abstract][Full Text] [Related]
4. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene. Kristensen K; Jensen LN; Glasius M; Bilde M Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852 [TBL] [Abstract][Full Text] [Related]
5. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems. Seinfeld JH; Erdakos GB; Asher WE; Pankow JF Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196 [TBL] [Abstract][Full Text] [Related]
7. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene. Song C; Zaveri RA; Shilling JE; Alexander ML; Newburn M Environ Sci Technol; 2011 Sep; 45(17):7323-9. PubMed ID: 21790137 [TBL] [Abstract][Full Text] [Related]
8. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products. Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576 [TBL] [Abstract][Full Text] [Related]
9. Relative humidity-dependent evolution of molecular composition of α-pinene secondary organic aerosol upon heterogeneous oxidation by hydroxyl radicals. Wang W; Li C; Xiao H; Li Z; Zhao Y J Environ Sci (China); 2025 Feb; 148():210-220. PubMed ID: 39095158 [TBL] [Abstract][Full Text] [Related]
10. Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from α-Pinene Ozonolysis. Saha PK; Grieshop AP Environ Sci Technol; 2016 Jun; 50(11):5740-9. PubMed ID: 27144815 [TBL] [Abstract][Full Text] [Related]
11. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3. Docherty KS; Wu W; Lim YB; Ziemann PJ Environ Sci Technol; 2005 Jun; 39(11):4049-59. PubMed ID: 15984782 [TBL] [Abstract][Full Text] [Related]
12. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content. Epstein SA; Blair SL; Nizkorodov SA Environ Sci Technol; 2014 Oct; 48(19):11251-8. PubMed ID: 25165890 [TBL] [Abstract][Full Text] [Related]
13. Secondary Organic Aerosol Mass Yields from NO Day DA; Fry JL; Kang HG; Krechmer JE; Ayres BR; Keehan NI; Thompson SL; Hu W; Campuzano-Jost P; Schroder JC; Stark H; DeVault MP; Ziemann PJ; Zarzana KJ; Wild RJ; Dubè WP; Brown SS; Jimenez JL J Phys Chem A; 2022 Oct; 126(40):7309-7330. PubMed ID: 36170568 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation. Librando V; Tringali G J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369 [TBL] [Abstract][Full Text] [Related]
16. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry. Henry KM; Lohaus T; Donahue NM Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520 [TBL] [Abstract][Full Text] [Related]
17. Uptake of Semivolatile Secondary Organic Aerosol Formed from α-Pinene into Nonvolatile Polyethylene Glycol Probe Particles. Ye P; Ding X; Ye Q; Robinson ES; Donahue NM J Phys Chem A; 2016 Mar; 120(9):1459-67. PubMed ID: 26689768 [TBL] [Abstract][Full Text] [Related]
18. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis. Berkemeier T; Ammann M; Mentel TF; Pöschl U; Shiraiwa M Environ Sci Technol; 2016 Jun; 50(12):6334-42. PubMed ID: 27219077 [TBL] [Abstract][Full Text] [Related]
19. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation. Nah T; Sanchez J; Boyd CM; Ng NL Environ Sci Technol; 2016 Jan; 50(1):222-31. PubMed ID: 26618657 [TBL] [Abstract][Full Text] [Related]
20. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. Kostenidou E; Lee BH; Engelhart GJ; Pierce JR; Pandis SN Environ Sci Technol; 2009 Jul; 43(13):4884-9. PubMed ID: 19673280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]