These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 26578803)

  • 1. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
    Jimeno-González S; Payán-Bravo L; Muñoz-Cabello AM; Guijo M; Gutierrez G; Prado F; Reyes JC
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14840-5. PubMed ID: 26578803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.
    Fong N; Kim H; Zhou Y; Ji X; Qiu J; Saldi T; Diener K; Jones K; Fu XD; Bentley DL
    Genes Dev; 2014 Dec; 28(23):2663-76. PubMed ID: 25452276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing.
    Matveeva EA; Al-Tinawi QMH; Rouchka EC; Fondufe-Mittendorf YN
    Epigenetics Chromatin; 2019 Feb; 12(1):15. PubMed ID: 30777121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells.
    He R; Kidder BL
    Nucleic Acids Res; 2017 Jun; 45(11):6427-6441. PubMed ID: 28402433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plant RNA polymerase II elongation complex: A hub coordinating transcript elongation and mRNA processing.
    Grasser M; Grasser KD
    Transcription; 2018; 9(2):117-122. PubMed ID: 28886274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone variant H2A.Z promotes efficient cotranscriptional splicing in
    Neves LT; Douglass S; Spreafico R; Venkataramanan S; Kress TL; Johnson TL
    Genes Dev; 2017 Apr; 31(7):702-717. PubMed ID: 28446598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation.
    Pascal C; Zonszain J; Hameiri O; Gargi-Levi C; Lev-Maor G; Tammer L; Levy T; Tarabeih A; Roy VR; Ben-Salmon S; Elbaz L; Eid M; Hakim T; Abu Rabe'a S; Shalev N; Jordan A; Meshorer E; Ast G
    Mol Cell; 2023 Nov; 83(21):3801-3817.e8. PubMed ID: 37922872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.
    Soboleva TA; Parker BJ; Nekrasov M; Hart-Smith G; Tay YJ; Tng WQ; Wilkins M; Ryan D; Tremethick DJ
    PLoS Genet; 2017 Feb; 13(2):e1006633. PubMed ID: 28234895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms.
    Lenasi T; Barboric M
    RNA Biol; 2010; 7(2):145-50. PubMed ID: 20305375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb).
    Lenasi T; Peterlin BM; Barboric M
    J Biol Chem; 2011 Jul; 286(26):22758-68. PubMed ID: 21536667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate.
    Moehle EA; Braberg H; Krogan NJ; Guthrie C
    RNA Biol; 2014; 11(4):313-9. PubMed ID: 24717535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.
    Saldi T; Cortazar MA; Sheridan RM; Bentley DL
    J Mol Biol; 2016 Jun; 428(12):2623-2635. PubMed ID: 27107644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent regulation of ELP1 exon 20 splicing in Familial Dysautonomia by RNA Polymerase II kinetics and chromatin structure.
    Riccardi F; Romano G; Licastro D; Pagani F
    PLoS One; 2024; 19(6):e0298965. PubMed ID: 38829854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design principles of interconnections between chromatin and pre-mRNA splicing.
    de Almeida SF; Carmo-Fonseca M
    Trends Biochem Sci; 2012 Jun; 37(6):248-53. PubMed ID: 22398209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional coupling of transcription and splicing.
    Montes M; Becerra S; Sánchez-Álvarez M; Suñé C
    Gene; 2012 Jun; 501(2):104-17. PubMed ID: 22537677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast.
    Wilhelm BT; Marguerat S; Aligianni S; Codlin S; Watt S; Bähler J
    Genome Biol; 2011 Aug; 12(8):R82. PubMed ID: 21859475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ioxynil and tetrabromobisphenol A suppress thyroid-hormone-induced activation of transcriptional elongation mediated by histone modifications and RNA polymerase II phosphorylation.
    Otsuka S; Ishihara A; Yamauchi K
    Toxicol Sci; 2014 Apr; 138(2):290-9. PubMed ID: 24449421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing.
    Saldi T; Fong N; Bentley DL
    Genes Dev; 2018 Feb; 32(3-4):297-308. PubMed ID: 29483154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone availability as a strategy to control gene expression.
    Prado F; Jimeno-González S; Reyes JC
    RNA Biol; 2017 Mar; 14(3):281-286. PubMed ID: 27211514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae.
    Sorenson MR; Jha DK; Ucles SA; Flood DM; Strahl BD; Stevens SW; Kress TL
    RNA Biol; 2016; 13(4):412-26. PubMed ID: 26821844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.