BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 26578810)

  • 21. An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference.
    Crow KD; Smith CD; Cheng JF; Wagner GP; Amemiya CT
    Genome Biol Evol; 2012; 4(9):937-53. PubMed ID: 22851613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.
    Tiley GP; Ané C; Burleigh JG
    Genome Biol Evol; 2016 Apr; 8(4):1023-37. PubMed ID: 26988251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase.
    Lin CJ; Maugars G; Lafont AG; Jeng SR; Wu GC; Dufour S; Chang CF
    Gen Comp Endocrinol; 2020 May; 291():113395. PubMed ID: 31981691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide identification and divergent transcriptional expression of StAR-related lipid transfer (START) genes in teleosts.
    Teng H; Cai W; Zeng K; Mao F; You M; Wang T; Zhao F; Sun Z
    Gene; 2013 Apr; 519(1):18-25. PubMed ID: 23415839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.
    Nakatani Y; Takeda H; Kohara Y; Morishita S
    Genome Res; 2007 Sep; 17(9):1254-65. PubMed ID: 17652425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.
    Song X; Wang Y; Tang Y
    PLoS One; 2013; 8(12):e83858. PubMed ID: 24349554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events.
    Song X; Tang Y; Wang Y
    Gene; 2016 Aug; 588(2):156-62. PubMed ID: 27188254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DupScan: predicting and visualizing vertebrate genome duplication database.
    Lu J; Huang P; Sun J; Liu J
    Nucleic Acids Res; 2023 Jan; 51(D1):D906-D912. PubMed ID: 36018807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of gene expression after whole-genome duplication: New insights from the spotted gar genome.
    Pasquier J; Braasch I; Batzel P; Cabau C; Montfort J; Nguyen T; Jouanno E; Berthelot C; Klopp C; Journot L; Postlethwait JH; Guiguen Y; Bobe J
    J Exp Zool B Mol Dev Evol; 2017 Nov; 328(7):709-721. PubMed ID: 28944589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative genomics provides evidence for an ancient genome duplication event in fish.
    Taylor JS; Van de Peer Y; Braasch I; Meyer A
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1661-79. PubMed ID: 11604130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage.
    Ogino Y; Kuraku S; Ishibashi H; Miyakawa H; Sumiya E; Miyagawa S; Matsubara H; Yamada G; Baker ME; Iguchi T
    Mol Biol Evol; 2016 Jan; 33(1):228-44. PubMed ID: 26507457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio).
    Li JT; Hou GY; Kong XF; Li CY; Zeng JM; Li HD; Xiao GB; Li XM; Sun XW
    Sci Rep; 2015 Feb; 5():8199. PubMed ID: 25645996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome wide identification, phylogeny, and expression of bone morphogenetic protein genes in tetraploidized common carp (Cyprinus carpio).
    Chen L; Dong C; Kong S; Zhang J; Li X; Xu P
    Gene; 2017 Sep; 627():157-163. PubMed ID: 28627438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire.
    Zapilko V; Korsching SI
    BMC Genomics; 2016 Jan; 17():83. PubMed ID: 26818853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.
    Lu J; Peatman E; Tang H; Lewis J; Liu Z
    BMC Genomics; 2012 Jun; 13():246. PubMed ID: 22702965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The lasting after-effects of an ancient polyploidy on the genomes of teleosts.
    Conant GC
    PLoS One; 2020; 15(4):e0231356. PubMed ID: 32298330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.