These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26578869)

  • 1. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays.
    le Feber J; Postma W; de Weerd E; Weusthof M; Rutten WL
    Front Neurosci; 2015; 9():412. PubMed ID: 26578869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Cultured Neuron Networks in vitro with Predefined Connectivity Using Asymmetric Microfluidic Channels.
    Gladkov A; Pigareva Y; Kutyina D; Kolpakov V; Bukatin A; Mukhina I; Kazantsev V; Pimashkin A
    Sci Rep; 2017 Nov; 7(1):15625. PubMed ID: 29142321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Bi-Layer Platform to Study Functional Interaction between Co-Cultured Neural Networks with Unidirectional Synaptic Connectivity.
    Pigareva Y; Gladkov A; Kolpakov V; Bukatin A; Li S; Kazantsev VB; Mukhina I; Pimashkin A
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenon pressure dependence on the synchronized burst inhibition of rat cortical neuronal network cultured on multi-electrode arrays.
    Uchida T; Shimada K; Tanabe R; Kubota T; Ito D; Yamazaki K; Gohara K
    IBRO Rep; 2017 Dec; 3():45-54. PubMed ID: 30135941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transfer within a cultured asymmetric cortical neuron circuit.
    Isomura T; Shimba K; Takayama Y; Takeuchi A; Kotani K; Jimbo Y
    J Neural Eng; 2015 Dec; 12(6):066023. PubMed ID: 26529359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays.
    Amin H; Maccione A; Marinaro F; Zordan S; Nieus T; Berdondini L
    Front Neurosci; 2016; 10():121. PubMed ID: 27065786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons.
    Maeda E; Robinson HP; Kawana A
    J Neurosci; 1995 Oct; 15(10):6834-45. PubMed ID: 7472441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning populations with hubs govern the initiation and propagation of spontaneous bursts in neuronal networks after learning.
    Jia X; Shao W; Hu N; Shi J; Fan X; Chen C; Wang Y; Chen L; Qiao H; Li X
    Front Neurosci; 2022; 16():854199. PubMed ID: 36061604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-electrode array capable of supporting precisely patterned hippocampal neuronal networks.
    Zhou T; Perry SF; Berdichevsky Y; Petryna S; Fluck V; Tatic-Lucic S
    Biomed Microdevices; 2015 Feb; 17(1):2. PubMed ID: 25653057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays.
    Chen C; Chen L; Lin Y; Zeng S; Luo Q
    Biosystems; 2006 Aug; 85(2):137-43. PubMed ID: 16533555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of stimulus induced responses in cultured hippocampal networks on microelectrode arrays.
    Pimashkin A; Gladkov A; Agrba E; Mukhina I; Kazantsev V
    Cogn Neurodyn; 2016 Aug; 10(4):287-99. PubMed ID: 27468317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for plasticity in dissociated cortical cultures on multi-electrode arrays.
    Wagenaar DA; Pine J; Potter SM
    J Negat Results Biomed; 2006 Oct; 5():16. PubMed ID: 17067395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-Evoked Activity Modulation of In Vitro Engineered Cortical and Hippocampal Networks.
    Callegari F; Brofiga M; Poggio F; Massobrio P
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of slow electrical stimuli to achieve learning in cultured networks of rat cortical neurons.
    le Feber J; Stegenga J; Rutten WL
    PLoS One; 2010 Jan; 5(1):e8871. PubMed ID: 20111726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimised PDMS Tunnel Devices on MEAs Increase the Probability of Detecting Electrical Activity from Human Stem Cell-Derived Neuronal Networks.
    Toivanen M; Pelkonen A; Mäkinen M; Ylä-Outinen L; Sukki L; Kallio P; Ristola M; Narkilahti S
    Front Neurosci; 2017; 11():606. PubMed ID: 29163011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks.
    Poli D; Thiagarajan S; DeMarse TB; Wheeler BC; Brewer GJ
    Front Neural Circuits; 2017; 11():13. PubMed ID: 28321182
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.