These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 26579605)
1. Designing peptide sequences in flexible chain conformations to bind RNA: a search algorithm combining Monte Carlo, self-consistent mean field and concerted rotation techniques. Xiao X; Agris PF; Hall CK J Chem Theory Comput; 2015 Feb; 11(2):740-52. PubMed ID: 26579605 [TBL] [Abstract][Full Text] [Related]
2. The design of a peptide sequence to inhibit HIV replication: a search algorithm combining Monte Carlo and self-consistent mean field techniques. Xiao X; Hall CK; Agris PF J Biomol Struct Dyn; 2014; 32(10):1523-36. PubMed ID: 24147736 [TBL] [Abstract][Full Text] [Related]
3. Molecular recognition mechanism of peptide chain bound to the tRNA(Lys3) anticodon loop in silico. Xiao X; Agris PF; Hall CK J Biomol Struct Dyn; 2015; 33(1):14-27. PubMed ID: 24417415 [TBL] [Abstract][Full Text] [Related]
4. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success. Xiao X; Agris PF; Hall CK Proteins; 2016 May; 84(5):700-11. PubMed ID: 26914059 [TBL] [Abstract][Full Text] [Related]
5. Extended Concerted Rotation Technique Enhances the Sampling Efficiency of the Computational Peptide-Design Algorithm. Xiao X; Wang Y; Leonard JN; Hall CK J Chem Theory Comput; 2017 Nov; 13(11):5709-5720. PubMed ID: 29023116 [TBL] [Abstract][Full Text] [Related]
6. Simulation study of the ability of a computationally-designed peptide to recognize target tRNA Xiao X; Zhao B; Agris PF; Hall CK Protein Sci; 2016 Dec; 25(12):2243-2255. PubMed ID: 27680513 [TBL] [Abstract][Full Text] [Related]
7. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential. Liu Z; Dominy BN; Shakhnovich EI J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009 [TBL] [Abstract][Full Text] [Related]
9. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA. Sugaya M; Nishino N; Katoh A; Harada K J Pept Sci; 2008 Aug; 14(8):924-35. PubMed ID: 18351707 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulations of the peptide recognition at the consensus binding site of the constant fragment of human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface. Verkhivker GM; Bouzida D; Gehlhaar DK; Rejto PA; Freer ST; Rose PW Proteins; 2002 Aug; 48(3):539-57. PubMed ID: 12112677 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo sampling algorithm for searching a scale-transformed energy space of polypeptides. Nakamura H J Comput Chem; 2002 Mar; 23(4):511-6. PubMed ID: 11908088 [TBL] [Abstract][Full Text] [Related]
12. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Lee J; Scheraga HA; Rackovsky S Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844 [TBL] [Abstract][Full Text] [Related]
13. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. Abagyan R; Totrov M J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329 [TBL] [Abstract][Full Text] [Related]
14. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping. Henke PS; Mak CH J Chem Phys; 2014 Aug; 141(6):064116. PubMed ID: 25134560 [TBL] [Abstract][Full Text] [Related]
15. Prediction of peptide conformation using a scale-transformed entropy sampling algorithm. Nakamura H Comput Biol Chem; 2004 Feb; 28(1):61-6. PubMed ID: 15022644 [TBL] [Abstract][Full Text] [Related]
17. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta. Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040 [TBL] [Abstract][Full Text] [Related]
18. Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite. Makrodimitris K; Masica DL; Kim ET; Gray JJ J Am Chem Soc; 2007 Nov; 129(44):13713-22. PubMed ID: 17929924 [TBL] [Abstract][Full Text] [Related]
19. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides. Iwaoka M; Kimura N; Yosida D; Minezaki T J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140 [TBL] [Abstract][Full Text] [Related]