BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

995 related articles for article (PubMed ID: 26579616)

  • 1. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.
    Tiwari JN; Vij V; Kemp KC; Kim KS
    ACS Nano; 2016 Jan; 10(1):46-80. PubMed ID: 26579616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.
    Yang C; Denno ME; Pyakurel P; Venton BJ
    Anal Chim Acta; 2015 Aug; 887():17-37. PubMed ID: 26320782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.
    Kumar S; Ahlawat W; Kumar R; Dilbaghi N
    Biosens Bioelectron; 2015 Aug; 70():498-503. PubMed ID: 25899923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.
    Wang CH; Wu CH; Wu JW; Lee MT; Chang JK; Ger MD; Sun CL
    Analyst; 2013 Jan; 138(2):576-82. PubMed ID: 23172364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.
    Lawal AT
    Talanta; 2015 Jan; 131():424-43. PubMed ID: 25281124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide--multiwalled carbon nanotube film modified glass carbon electrode.
    Gao W; Tjiu WW; Wei J; Liu T
    Talanta; 2014 Mar; 120():484-90. PubMed ID: 24468400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.
    Dalkıran B; Erden PE; Kılıç E
    Anal Bioanal Chem; 2016 Jun; 408(16):4329-39. PubMed ID: 27074783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine.
    Yu X; Sheng K; Shi G
    Analyst; 2014 Sep; 139(18):4525-31. PubMed ID: 25045758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.
    Komori K; Terse-Thakoor T; Mulchandani A
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3647-54. PubMed ID: 25659160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in utilisation of graphene for electrochemical biosensors.
    Lawal AT
    Biosens Bioelectron; 2018 May; 106():149-178. PubMed ID: 29414083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose.
    Stromberg LR; Hondred JA; Sanborn D; Mendivelso-Perez D; Ramesh S; Rivero IV; Kogot J; Smith E; Gomes C; Claussen JC
    Mikrochim Acta; 2019 Jul; 186(8):533. PubMed ID: 31309292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors.
    Alwarappan S; Liu G; Li CZ
    Nanomedicine; 2010 Feb; 6(1):52-7. PubMed ID: 19616125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.
    Cernat A; Tertiş M; Săndulescu R; Bedioui F; Cristea A; Cristea C
    Anal Chim Acta; 2015 Jul; 886():16-28. PubMed ID: 26320632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors.
    Shi J; Claussen JC; McLamore ES; ul Haque A; Jaroch D; Diggs AR; Calvo-Marzal P; Rickus JL; Porterfield DM
    Nanotechnology; 2011 Sep; 22(35):355502. PubMed ID: 21828892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors.
    Zhang R; Chen W
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):249-268. PubMed ID: 26852831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress on Graphene-based Electrochemical Biosensors.
    Zhang Y; Shen J; Li H; Wang L; Cao D; Feng X; Liu Y; Ma Y; Wang L
    Chem Rec; 2016 Feb; 16(1):273-94. PubMed ID: 26684691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.
    Sun Y; He K; Zhang Z; Zhou A; Duan H
    Biosens Bioelectron; 2015 Jun; 68():358-364. PubMed ID: 25603401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.