BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26579714)

  • 1. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations.
    Koulgi S; Achalere A; Sonavane U; Joshi R
    PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants.
    Koulgi S; Achalere A; Sharma N; Sonavane U; Joshi R
    J Mol Model; 2013 Dec; 19(12):5545-59. PubMed ID: 24253321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.
    Barakat K; Issack BB; Stepanova M; Tuszynski J
    PLoS One; 2011; 6(11):e27651. PubMed ID: 22110706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations.
    Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR
    EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library.
    Shiraishi K; Kato S; Han SY; Liu W; Otsuka K; Sakayori M; Ishida T; Takeda M; Kanamaru R; Ohuchi N; Ishioka C
    J Biol Chem; 2004 Jan; 279(1):348-55. PubMed ID: 14559903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer.
    Liu X; Tian W; Cheng J; Li D; Liu T; Zhang L
    Comput Biol Chem; 2020 Feb; 84():107194. PubMed ID: 31881526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain.
    Bej A; Rasquinha JA; Mukherjee S
    Biochemistry; 2018 Nov; 57(44):6265-6269. PubMed ID: 30362715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain.
    Wright JD; Noskov SY; Lim C
    Nucleic Acids Res; 2002 Apr; 30(7):1563-74. PubMed ID: 11917017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A split-ubiquitin-based assay detects the influence of mutations on the conformational stability of the p53 DNA binding domain in vivo.
    Johnsson N
    FEBS Lett; 2002 Nov; 531(2):259-64. PubMed ID: 12417323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells.
    Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR
    Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry.
    Dickinson ER; Jurneczko E; Pacholarz KJ; Clarke DJ; Reeves M; Ball KL; Hupp T; Campopiano D; Nikolova PV; Barran PE
    Anal Chem; 2015 Mar; 87(6):3231-8. PubMed ID: 25629302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis of the dominant negative effect of p53 mutants.
    Chène P
    J Mol Biol; 1998 Aug; 281(2):205-9. PubMed ID: 9698540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket.
    Pradhan MR; Siau JW; Kannan S; Nguyen MN; Ouaray Z; Kwoh CK; Lane DP; Ghadessy F; Verma CS
    Nucleic Acids Res; 2019 Feb; 47(4):1637-1652. PubMed ID: 30649466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation".
    Friedler A; DeDecker BS; Freund SM; Blair C; Rüdiger S; Fersht AR
    J Mol Biol; 2004 Feb; 336(1):187-96. PubMed ID: 14741214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain.
    Ouaray Z; ElSawy KM; Lane DP; Essex JW; Verma C
    Proteins; 2016 Oct; 84(10):1443-61. PubMed ID: 27317883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.