These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 26579714)
1. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations. Koulgi S; Achalere A; Sonavane U; Joshi R PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393 [TBL] [Abstract][Full Text] [Related]
3. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants. Koulgi S; Achalere A; Sharma N; Sonavane U; Joshi R J Mol Model; 2013 Dec; 19(12):5545-59. PubMed ID: 24253321 [TBL] [Abstract][Full Text] [Related]
4. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant. Barakat K; Issack BB; Stepanova M; Tuszynski J PLoS One; 2011; 6(11):e27651. PubMed ID: 22110706 [TBL] [Abstract][Full Text] [Related]
5. R248Q mutation--Beyond p53-DNA binding. Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703 [TBL] [Abstract][Full Text] [Related]
6. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. Lubin DJ; Butler JS; Loh SN J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936 [TBL] [Abstract][Full Text] [Related]
8. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. Shiraishi K; Kato S; Han SY; Liu W; Otsuka K; Sakayori M; Ishida T; Takeda M; Kanamaru R; Ohuchi N; Ishioka C J Biol Chem; 2004 Jan; 279(1):348-55. PubMed ID: 14559903 [TBL] [Abstract][Full Text] [Related]
9. Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Liu X; Tian W; Cheng J; Li D; Liu T; Zhang L Comput Biol Chem; 2020 Feb; 84():107194. PubMed ID: 31881526 [TBL] [Abstract][Full Text] [Related]
10. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain. Bej A; Rasquinha JA; Mukherjee S Biochemistry; 2018 Nov; 57(44):6265-6269. PubMed ID: 30362715 [TBL] [Abstract][Full Text] [Related]
11. Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain. Wright JD; Noskov SY; Lim C Nucleic Acids Res; 2002 Apr; 30(7):1563-74. PubMed ID: 11917017 [TBL] [Abstract][Full Text] [Related]
12. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. Kamada R; Nomura T; Anderson CW; Sakaguchi K J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130 [TBL] [Abstract][Full Text] [Related]
13. A split-ubiquitin-based assay detects the influence of mutations on the conformational stability of the p53 DNA binding domain in vivo. Johnsson N FEBS Lett; 2002 Nov; 531(2):259-64. PubMed ID: 12417323 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395 [TBL] [Abstract][Full Text] [Related]
15. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077 [TBL] [Abstract][Full Text] [Related]
16. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry. Dickinson ER; Jurneczko E; Pacholarz KJ; Clarke DJ; Reeves M; Ball KL; Hupp T; Campopiano D; Nikolova PV; Barran PE Anal Chem; 2015 Mar; 87(6):3231-8. PubMed ID: 25629302 [TBL] [Abstract][Full Text] [Related]
17. In vitro analysis of the dominant negative effect of p53 mutants. Chène P J Mol Biol; 1998 Aug; 281(2):205-9. PubMed ID: 9698540 [TBL] [Abstract][Full Text] [Related]
19. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation". Friedler A; DeDecker BS; Freund SM; Blair C; Rüdiger S; Fersht AR J Mol Biol; 2004 Feb; 336(1):187-96. PubMed ID: 14741214 [TBL] [Abstract][Full Text] [Related]
20. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain. Ouaray Z; ElSawy KM; Lane DP; Essex JW; Verma C Proteins; 2016 Oct; 84(10):1443-61. PubMed ID: 27317883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]