BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26579755)

  • 1. Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging?
    Qu ZW; Hansen A; Grimme S
    J Chem Theory Comput; 2015 Mar; 11(3):1037-45. PubMed ID: 26579755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction.
    Hirao H
    J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-C dissociation of adenosylcobalamin (coenzyme B12): role of dispersion, induction effects, solvent polarity, and relativistic and thermal corrections.
    Kepp KP
    J Phys Chem A; 2014 Aug; 118(34):7104-17. PubMed ID: 25116644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of Co-C bond cleavage in the neutral and one-electron-reduced alkyl-cobalt(III) phthalocyanines.
    Galezowski W; Kuta J; Kozlowski PM
    J Phys Chem B; 2008 Mar; 112(10):3177-83. PubMed ID: 18271575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the Co-C bond is cleaved in coenzyme B12 enzymes: a theoretical study.
    Jensen KP; Ryde U
    J Am Chem Soc; 2005 Jun; 127(25):9117-28. PubMed ID: 15969590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and computational studies of cobalamin species with variable lower axial ligation: implications for the mechanism of Co-C bond activation by class I cobalamin-dependent isomerases.
    Conrad KS; Jordan CD; Brown KL; Brunold TC
    Inorg Chem; 2015 Apr; 54(8):3736-47. PubMed ID: 25839944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations.
    Lodowski P; Jaworska M; Andruniów T; Kumar M; Kozlowski PM
    J Phys Chem B; 2009 May; 113(19):6898-909. PubMed ID: 19374399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-C bond energies in adenosylcobinamide and methylcobinamide in the gas phase and in silico.
    Kobylianskii IJ; Widner FJ; Kräutler B; Chen P
    J Am Chem Soc; 2013 Sep; 135(37):13648-51. PubMed ID: 24007238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How is a co-methyl intermediate formed in the reaction of cobalamin-dependent methionine synthase? Theoretical evidence for a two-step methyl cation transfer mechanism.
    Chen SL; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2011 Apr; 115(14):4066-77. PubMed ID: 21417249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations.
    Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M
    J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Co-C bonding in dichlorovinylcobaloxime complexes.
    Follett AD; McNabb KA; Peterson AA; Scanlon JD; Cramer CJ; McNeill K
    Inorg Chem; 2007 Mar; 46(5):1645-54. PubMed ID: 17286398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Potentials of Cobalt Corrinoids with Axial Ligands Correlate with Heterolytic Co-C Bond Dissociation Energies.
    Morita Y; Oohora K; Sawada A; Kamachi T; Yoshizawa K; Hayashi T
    Inorg Chem; 2017 Feb; 56(4):1950-1955. PubMed ID: 28165219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Co-C bond photolysis in the base-on form of methylcobalamin.
    Lodowski P; Jaworska M; Andruniów T; Garabato BD; Kozlowski PM
    J Phys Chem A; 2014 Dec; 118(50):11718-34. PubMed ID: 25383645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO binding to cobalamin: influence of the metal oxidation state.
    Selçuki C; van Eldik R; Clark T
    Inorg Chem; 2004 May; 43(9):2828-33. PubMed ID: 15106969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and computational studies of Co2+corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co2+cobalamin.
    Stich TA; Buan NR; Brunold TC
    J Am Chem Soc; 2004 Aug; 126(31):9735-49. PubMed ID: 15291577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Co-C bond photolysis in methylcobalamin: influence of axial base.
    Lodowski P; Jaworska M; Garabato BD; Kozlowski PM
    J Phys Chem A; 2015 Apr; 119(17):3913-28. PubMed ID: 25837554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study.
    Pandey KK; Patidar P; Bariya PK; Patidar SK; Vishwakarma R
    Dalton Trans; 2014 Jul; 43(26):9955-67. PubMed ID: 24850167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion-corrected density functional theory for aromatic interactions in complex systems.
    Ehrlich S; Moellmann J; Grimme S
    Acc Chem Res; 2013 Apr; 46(4):916-26. PubMed ID: 22702344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.